Advertisement

Journal of Statistical Physics

, Volume 132, Issue 3, pp 551–560 | Cite as

Large Deviations for Random Trees

  • Yuri Bakhtin
  • Christine Heitsch
Article

Abstract

We consider large random trees under Gibbs distributions and prove a Large Deviation Principle (LDP) for the distribution of degrees of vertices of the tree. The LDP rate function is given explicitly. An immediate consequence is a Law of Large Numbers for the distribution of vertex degrees in a large random tree. Our motivation for this study comes from the analysis of RNA secondary structures.

Keywords

Random trees Gibbs distributions Large deviations RNA secondary structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bakhtin, Y., Heitsch, C.: Large deviations for random trees and the branching of RNA secondary structures. Bull. Math. Biol., submitted online version available at http://arxiv.org/abs/0803.3990
  2. 2.
    Condon, A.: Problems on RNA secondary structure prediction and design. In: Automata, Languages and Programming. Lecture Notes in Comput. Sci., vol. 2719, pp. 22–32. Springer, Berlin (2003) CrossRefGoogle Scholar
  3. 3.
    Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge (1998) MATHGoogle Scholar
  4. 4.
    Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, 2nd edn. Applications of Mathematics, New York, vol. 38. Springer, New York (1998) MATHGoogle Scholar
  5. 5.
    Ellis, R.S.: Entropy, Large Deviations, and Statistical Mechanics. Classics in Mathematics. Springer, Berlin (2006). Reprint in the 1985 original MATHGoogle Scholar
  6. 6.
    Gan, H.H., Pasquali, S., Schlick, T.: Exploring the repertoire of RNA secondary motifs using graph theory; implications for RNA design. Nucl. Acids Res. 31(11), 2926–2943 (2003) CrossRefGoogle Scholar
  7. 7.
    Heitsch, C.E., Condon, A., Hoos, H.H.: From RNA secondary structure to coding theory: A combinatorial approach. In: Ohuchi, A., Hagiya, M. (eds.) DNA8: Revised Papers from the 8th International Workshop on DNA Based Computers. Lecture Notes in Computer Science, vol. 2568, pp. 215–228. Springer, London (2003) Google Scholar
  8. 8.
    Le, S.-Y., Nussinov, R., Maizel, J.V.: Tree graphs of RNA secondary structures and their comparisons. Comput. Biomed. Res. 22(5), 461–473 (1989) CrossRefGoogle Scholar
  9. 9.
    Mathews, D.H.: Revolutions in RNA secondary structure prediction. J. Mol. Biol. 359(3), 526–32 (2006) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Mathews, D.H., Turner, D.H.: Prediction of RNA secondary structure by free energy minimization. Curr. Opin. Struct. Biol. 16(3), 270–278 (2006) CrossRefGoogle Scholar
  11. 11.
    Moon, J.W.: Counting Labelled Trees. From Lectures Delivered to the Twelfth Biennial Seminar of the Canadian Mathematical Congress, Vancouver, vol. 1969. Canadian Mathematical Congress, Montreal (1970) Google Scholar
  12. 12.
    Stanley, R.P.: Enumerative Combinatorics, Vol. 2. Cambridge Studies in Advanced Mathematics, vol. 62. Cambridge University Press, Cambridge (1999). With a foreword by Gian-Carlo Rota and Appendix 1 by S. Fomin Google Scholar
  13. 13.
    Schmitt, W.R., Waterman, M.S.: Linear trees and RNA secondary structure. Discrete Appl. Math. 51(3), 317–323 (1994) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Shapiro, B.A., Zhang, K.: Comparing multiple RNA secondary structures using tree comparisons. Comput. Appl. Biosci. 6(4), 309–18 (1990) Google Scholar
  15. 15.
    Waterman, M.S.: Introduction to Computational Biology: Maps, Sequences and Genomes. Chapman & Hall/CRC, London/Boca Raton (1995) MATHGoogle Scholar
  16. 16.
    Zuker, M.: RNA folding prediction: the continued need for interaction between biologists and mathematicians. In: Some Mathematical Questions in Biology—DNA Sequence Analysis, New York, 1984. Lectures Math. Life Sci., vol. 17, pp. 87–124. Amer. Math. Soc., Providence (1986) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.School of MathematicsGeorgia Tech.AtlantaUSA

Personalised recommendations