Advertisement

Journal of Statistical Physics

, Volume 131, Issue 6, pp 1067–1083 | Cite as

Two Bessel Bridges Conditioned Never to Collide, Double Dirichlet Series, and Jacobi Theta Function

  • Makoto Katori
  • Minami Izumi
  • Naoki Kobayashi
Article

Abstract

It is known that the moments of the maximum value of a one-dimensional conditional Brownian motion, the three-dimensional Bessel bridge with duration 1 started from the origin, are expressed using the Riemann zeta function. We consider a system of two Bessel bridges, in which noncolliding condition is imposed. We show that the moments of the maximum value is then expressed using the double Dirichlet series, or using the integrals of products of the Jacobi theta functions and its derivatives. Since the present system will be provided as a diffusion scaling limit of a version of vicious walker model, the ensemble of 2-watermelons with a wall, the dominant terms in long-time asymptotics of moments of height of 2-watermelons are completely determined. For the height of 2-watermelons with a wall, the average value was recently studied by Fulmek by a method of enumerative combinatorics.

Keywords

Bessel process Bessel bridge Noncolliding diffusion process Riemann zeta function Jacobi theta function Double Dirichlet series Dyck path Vicious walk 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altland, A., Zirnbauer, M.R.: Random matrix theory of a chaotic Andreev quantum dot. Phys. Rev. Lett. 76, 3420–3424 (1996) CrossRefADSGoogle Scholar
  2. 2.
    Altland, A., Zirnbauer, M.R.: Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures. Phys. Rev. B 55, 1142–1161 (1997) CrossRefADSGoogle Scholar
  3. 3.
    Arrowsmith, D.K., Mason, P., Essam, J.W.: Vicious walkers, flows and directed percolation. Physica A 177, 267–272 (1991) CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Biane, P., Pitman, J., Yor, M.: Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions. Bull. Am. Math. Soc. 38, 435–465 (2001). arXiv:math.PR/9912170 MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bonichon, N., Mosbah, M.: Watermelon uniform random generation with applications. Theor. Comput. Sci. 307, 241–256 (2003) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Borodin, A.N., Salminen, P.: Handbook of Brownian Motion—Facts and Formulae, 2nd edn. Birkhäuser, Basel (2002) MATHGoogle Scholar
  7. 7.
    de Bruijn, N.G., Knuth, D.E., Rice, S.O.: The average height of planted plane trees. In: Read, R.C. (ed.) Graph Theory and Computing, pp. 15–22. Academic Press, San Diego (1972) Google Scholar
  8. 8.
    Essam, J.W., Guttmann, A.J.: Vicious walkers and directed polymer networks in general dimensions. Phys. Rev. E 52, 5849–5862 (1995) CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Feierl, T.: The height of watermelons with wall. arXiv:math.CO/0802.2691 Google Scholar
  10. 10.
    Fisher, M.E.: Walks, walls, wetting, and melting. J. Stat. Phys. 34, 667–729 (1984) MATHCrossRefADSGoogle Scholar
  11. 11.
    Fulmek, M.: Asymptotics of the average height of 2-watermelons with a wall. Electron. J. Comb. 14, #R64/1-20 (2007). http://www.combinatorics.org/ MathSciNetGoogle Scholar
  12. 12.
    Gillet, F.: Asymptotic behaviour of watermelons. arXiv:math.PR/0307204 Google Scholar
  13. 13.
    Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, Berlin (1991) MATHGoogle Scholar
  14. 14.
    Karlin, S., McGregor, J.: Coincidence probabilities. Pac. J. Math. 9, 1141–1164 (1959) MATHMathSciNetGoogle Scholar
  15. 15.
    Katori, M., Tanemura, H.: Scaling limit of vicious walks and two-matrix model. Phys. Rev. E 66, 011105/1-12 (2002). CrossRefADSGoogle Scholar
  16. 16.
    Katori, M., Tanemura, H.: Functional central limit theorems for vicious walkers. Stoch. Stoch. Rep. 75, 369–390 (2003). arXiv:math.PR/0203286 MATHMathSciNetGoogle Scholar
  17. 17.
    Katori, M., Tanemura, H.: Symmetry of matrix-valued stochastic processes and noncolliding diffusion particle systems. J. Math. Phys. 45, 3058–3085 (2004) MATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Katori, M., Tanemura, H.: Infinite systems of non-colliding generalized meanders and Riemann-Liouville differintegrals. Probab. Theory Relat. Fields 138, 113–156 (2007) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Katori, M., Tanemura, H.: Noncolliding Brownian motion and determinantal processes. J. Stat. Phys. 129, 1233–1277 (2007) MATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Krattenthaler, C.: Watermelon configurations with wall interaction: exact and asymptotic results. J. Phys. Conf. Ser. 42, 179–212 (2006) CrossRefADSGoogle Scholar
  21. 21.
    Krattenthaler, C., Guttmann, A.J., Viennot, X.G.: Vicious walkers, friendly walkers and Young tableaux II: with a wall. J. Phys. A: Math. Phys. 33, 8835–8866 (2000) MATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Kuijlaars, A.B.J., Martínez-Finkelshtein, A., Wielonsky, F.: Non-intersecting squared Bessel paths and multiple orthogonal polynomials for modified Bessel weights. arXiv:math.CA/0712.1333 Google Scholar
  23. 23.
    Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn. Springer, Now York (1998) Google Scholar
  24. 24.
    Tracy, C.A., Widom, H.: Nonintersecting Brownian excursions. Ann. Appl. Probab. 17, 953–979 (2007) MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Yor, M.: Some Aspects of Brownian Motion, Part II: Some Recent Martingale Problems. Birkhäuser, Basel (1997) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Science and EngineeringChuo UniversityTokyoJapan

Personalised recommendations