Advertisement

Journal of Statistical Physics

, Volume 131, Issue 2, pp 235–246 | Cite as

A Limit Result for a System of Particles in Random Environment

  • Pierre Andreoletti
Article

Abstract

We consider an infinite system of particles in one dimension, each particle performs independent Sinai’s random walk in random environment. Considering an instant t, large enough, we prove a result in probability showing that the particles are trapped in the neighborhood of well defined points of the lattice depending on the random environment, t and the starting points of the particles.

Keywords

Random environment Random walk Sinai’s regime System of particles Excursions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ligget, T.M.: Interacting Particle Systems. Springer, New York (1985) Google Scholar
  2. 2.
    DeMasi, A., Presutti, E.: Mathematical methods for hydrodynamic limits. In: Lectures Notes in Mathematics. Springer, Berlin (1991) Google Scholar
  3. 3.
    Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Springer, Berlin (1998) Google Scholar
  4. 4.
    Solomon, F.: Random walks in random environment. Ann. Probab. 3(1), 1–31 (1975) MATHCrossRefGoogle Scholar
  5. 5.
    Sinai, Ya.G.: The limit behaviour of a one-dimensional random walk in a random medium. Theory Probab. Appl. 27(2), 256–268 (1982) CrossRefMathSciNetGoogle Scholar
  6. 6.
    Bovier, A., Faggionato, A.: Spectral analysis of Sinai’s walk for small eigenvalues. Ann. Probab. 36(1), 198–254 (2008) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Neveu, J., Pitman, J.: Renewal property of the extrema and tree property of the excursion of a one-dimensional Brownian motion. In: Séminaire de Probabilitées XXIII, volume 1372. Springer, Berlin (1989) Google Scholar
  8. 8.
    Andreoletti, P.: Alternative proof for the localisation of Sinai’s walk. J. Stat. Phys. 118, 883–933 (2005) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Durrett, R.: Probability: Theory an Examples, 2nd edn. Duxbury Press, Pacific Grove (1996) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Laboratoire MAPMO, C.N.R.S. UMR 6628, Fédération Denis-PoissonUniversité d’OrléansOrléansFrance

Personalised recommendations