Journal of Statistical Physics

, Volume 131, Issue 1, pp 127–151 | Cite as

Gibbs Delaunay Tessellations with Geometric Hardcore Conditions



In this paper, we prove the existence of infinite Gibbs Delaunay tessellations on ℝ2. The interaction depends on the local geometry of the tessellation. We introduce a geometric hardcore condition on small and large cells, consequently we can construct more regular infinite random Delaunay tessellations.


Stochastic geometry Gibbs measure Delaunay tessellation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arak, T.: On Markovian random fields with finite number of values. In: 4th USSR-Japan Symposium on Probability Theory and Mathematical Statistics, Abstract of Communications, Tbilisi (1982) Google Scholar
  2. 2.
    Arak, T., Surgailis, D.: Markovian fields with polygonal realisations. Probab. Theory Relat. Fields 80, 543–579 (1989) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Arak, T., Surgailis, D.: Consistent polygonal fields. Probab. Theory Relat. Fields 89, 319–346 (1989) CrossRefMathSciNetGoogle Scholar
  4. 4.
    Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1999) MATHGoogle Scholar
  5. 5.
    Bertin, E., Billiot, J.M., Drouilhet, R.: Spatial Delaunay Gibbs point process. Commun. Stat.-Stoch. Models 15(2), 181–199 (1999) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bertin, E., Billiot, J.M., Drouilhet, R.: Existence of Delaunay pairwise Gibbs point process with superstable component. J. Stat. Phys. 95(3–4), 719–744 (1999) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bertin, E., Billiot, J.M., Drouilhet, R.: Existence of nearest-neighbours spatial Gibbs models. Adv. Appl. Probab. (SGSA) 31, 895–909 (1999) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes, vol. I, 2nd edn. Springer, Berlin (2005) Google Scholar
  9. 9.
    Georgii, H.-O.: Canonical Gibbs Measures. Lecture Notes in Mathematics, vol. 760. Springer, Berlin (1979) MATHGoogle Scholar
  10. 10.
    Glötzl, E.: Lokale Energien und Potentiale für Punktprozesse. Math. Nachr. 96, 195–206 (1980) MATHCrossRefGoogle Scholar
  11. 11.
    Matthes, K., Kerstan, J., Mecke, J.: Infinitely Divisible Point Process. Wiley, New York (1978) Google Scholar
  12. 12.
    Moller, J.: Random Tessellation. Wiley, New York (1978) Google Scholar
  13. 13.
    Nguyen, X.X., Zessin, H.: Integral and differential characterizations of the Gibbs process. Math. Nachr. 88, 105–115 (1979) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Preston, C.: Random Fields. Lecture Notes in Mathematics, vol. 714. Springer, Berlin (1976) MATHGoogle Scholar
  15. 15.
    Ripley, B.: Modeling spatial patterns. J. R. Stat. Soc. B 39, 172–212 (1977) MathSciNetGoogle Scholar
  16. 16.
    Ruelle, D.: Statistical Mechanics. Rigorous Results. Benjamin, New York (1969) MATHGoogle Scholar
  17. 17.
    Ruelle, D.: Superstable interactions in classical statistical mechanics. Commun. Math. Phys. 18, 127–159 (1970) MATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Schreiber, T.: Mixing properties of polygonal Markov fields in the plane. Preprint 18 of Faculty and Computer Science of the Nicolaus Copernicus University (2003) Google Scholar
  19. 19.
    Zahle, M.: Random cell complexes and generalised sets. Ann. Probab. 16, 1742–1766 (1966) CrossRefMathSciNetGoogle Scholar
  20. 20.
    Zessin, H.: Lokale Energien und Potentiale für Punktprozesse. Math. Nachr. 96, 195–206 (1980) CrossRefGoogle Scholar
  21. 21.
    Zessin, H.: Specific index and curvature for random simplicial complexes. Inst. Math. Natl. Acad. Sci. Armenia 37(1), 64–81 (2002) MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Université de Valenciennes et du Hainaut-CambrésisValenciennes Cedex 09France

Personalised recommendations