Skip to main content
Log in

Sharpness of the Phase Transition and Exponential Decay of the Subcritical Cluster Size for Percolation on Quasi-Transitive Graphs

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study homogeneous, independent percolation on general quasi-transitive graphs. We prove that in the disorder regime where all clusters are finite almost surely, in fact the expectation of the cluster size is finite. This extends a well-known theorem by Menshikov and Aizenman & Barsky to all quasi-transitive graphs. Moreover we deduce that in this disorder regime the cluster size distribution decays exponentially, extending a result of Aizenman & Newman. Our results apply to both edge and site percolation, as well as long range (edge) percolation. The proof is based on a modification of the Aizenman & Barsky method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman, M., Barsky, D.J.: Sharpness of the phase transition in percolation models. Commun. Math. Phys. 108(3), 489–526 (1987)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Aizenman, M., Newman, C.M.: Tree graph inequalities and critical behavior in percolation models. J. Stat. Phys. 36(1-2), 107–143 (1984)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Antunović, T., Veselić, I.: Equality of Lifshitz and van Hove exponents on amenable Cayley graphs. http://www.arxiv.org/abs/0706.2844

  4. Antunović, T., Veselić, I.: Spectral asymptotics of percolation Hamiltonians on amenable Cayley graphs. In: Proceedings of OTAMP 2006. Operator Theory: Advances and Applications (2007, in press)

  5. Biskup, M., König, W.: Long-time tails in the parabolic Anderson model with bounded potential. Ann. Probab. 29(2), 636–682 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Grimmett, G.: Percolation, Grundlehren der Mathematischen Wissenschaften, vol. 321. Springer, Berlin (1999)

    Google Scholar 

  7. Hof, A.: Percolation on Penrose tilings. Can. Math. Bull. 41(2), 166–177 (1998)

    MATH  MathSciNet  Google Scholar 

  8. Kesten, H.: The critical probability of bond percolation on the square lattice equals 1/2. Commun. Math. Phys. 74(1), 41–59 (1980)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Kesten, H.: Percolation Theory for Mathematicians. Progress in Probability and Statistics, vol. 2. Birkhäuser, Boston (1982)

    MATH  Google Scholar 

  10. Kirsch, W., Müller, P.: Spectral properties of the Laplacian on bond-percolation graphs. Math. Z. 252(4), 899–916 (2006). http://www.arXiv.org/abs/math-ph/0407047

    Article  MATH  MathSciNet  Google Scholar 

  11. Klopp, F., Nakamura, S.: A note on Anderson localization for the random hopping model. J. Math. Phys. 44(11), 4975–4980 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Men’shikov, M.: Coincidence of critical points in percolation problems. Sov. Math. Dokl. 33, 856–859 (1986)

    MATH  Google Scholar 

  13. Men’shikov, M.V., Molchanov, S.A., Sidorenko, A.F.: Percolation theory and some applications. In: Probability Theory. Mathematical Statistics. Theoretical Cybernetics (Russian), Itogi Nauki i Tekhniki, vol. 24, pp. 53–110. Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow (1986). Translated in J. Sov. Math. 42(4) 1766–1810. http://dx.doi.org/10.1007/BF01095508

    Google Scholar 

  14. Müller, P., Stollmann, P.: Spectral asymptotics of the Laplacian on supercritical bond-percolation graphs. http://www.arxiv.org/math-ph/0506053

  15. Müller, P., Richard, C.: Random colourings of aperiodic graphs: ergodic and spectral properties. http://www.arxiv.org/abs/0709.0821

  16. Russo, L.: On the critical percolation probabilities. Z. Wahrscheinlichkeitstheor. Verw. Geb. 56(2), 229–237 (1981)

    Article  MATH  Google Scholar 

  17. van den Berg, J., Kesten, H.: Inequalities with applications to percolation and reliability. J. Appl. Probab. 22(3), 556–569 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  18. Veselić, I.: Quantum site percolation on amenable graphs. In: Proceedings of the Conference on Applied Mathematics and Scientific Computing, pp. 317–328. Springer, Dordrecht (2005). http://arXiv.org/math-ph/0308041

    Chapter  Google Scholar 

  19. Veselić, I.: Spectral analysis of percolation Hamiltonians. Math. Ann. 331(4), 841–865 (2005). http://arXiv.org/math-ph/0405006

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tonći Antunović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antunović, T., Veselić, I. Sharpness of the Phase Transition and Exponential Decay of the Subcritical Cluster Size for Percolation on Quasi-Transitive Graphs. J Stat Phys 130, 983–1009 (2008). https://doi.org/10.1007/s10955-007-9459-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9459-x

Keywords

Navigation