Journal of Statistical Physics

, Volume 130, Issue 2, pp 343–371 | Cite as

Evolution of the Probability Measure for the Majda Model: New Invariant Measures and Breathing PDFs



In 1993, Majda proposed a simple, random shear model from which scalar intermittency was rigorously predicted for the invariant probability measure of passive tracers. In this work, we present an integral formulation for the tracer measure, which leads to a new, comprehensive study on its temporal evolution based on Monte Carlo simulation and direct numerical integration. An interesting, non-monotonic “breathing” phenomenon is discovered from these results and carefully defined, with a solid example for special initial data to predict such phenomenon. The signature of this phenomenon may persist at long time, characterized by the approach of the PDF core to its infinite time, invariant value. We find that this approach may be strongly dependent on the non-dimensional Péclet number, of which the invariant measure itself is independent. Further, the “breathing” PDF is recovered as a new invariant measure in a distinguished time scale in the diffusionless limit. Rigorous asymptotic analysis is also performed to identify the Gaussian core of the invariant measures, and the critical rate at which the heavy, stretched exponential regime propagates towards the tail as a function of time is calculated.


Turbulent transport Scalar intermittency Invariant measures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antonia, R.A., Sreenivasan, K.R.: Log-normality of temperature dissipation in a turbulent boundary layer. Phys. Fluids 20, 1800–1804 (1977) CrossRefADSGoogle Scholar
  2. 2.
    Balkovsky, E., Fouxon, A.: Universal long-time properties of Lagrangian statistics in the Batchelor regime and their application to the passive scalar problem. Phys. Rev. E 60(4), 4164–4174 (1999) CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Batchelor, G.K.: Small-scale variation of convected quantities like temperature in turbulent fluid, Part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5, 113–133 (1959) MATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Bender, C.M., Orszag, S.A.: Advanced Mathematical Methods for Scientists and Engineers: Asymptotic Methods and Perturbation Theory. Springer, New York (2005) Google Scholar
  5. 5.
    Bourlioux, A., Majda, A.J.: Elementary models with probability distribution function intermittency for passive scalars with a mean gradient. Phys. Fluids 14, 881–897 (2002) CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Bronski, J.C.: Asymptotics of Karhunen–Loeve eigenvalues and tight constants for probability distributions of passive scalar transport. Commun. Math. Phys. 238(3), 563–582 (2003) MATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Bronski, J.C., McLaughlin, R.M.: Passive scalar intermittency and the ground state of Schrödinger operators. Phys. Fluids 9, 181–190 (1997) MATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Bronski, J.C., McLaughlin, R.M.: Rigorous estimates of the tails of the probability distribution function for the random linear shear model. J. Stat. Phys. 98(3–4), 897–915 (2000) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Castaing, B., Gunaratne, G., Heslot, F., Kadanoff, L., Libchaber, A., Thomae, S., Wu, X.-Z., Zaleski, S., Zanetti, G.: Scaling of hard thermal turbulence in Rayleigh–Bénard convection. J. Fluid Mech. 204, 1–30 (1989) CrossRefADSGoogle Scholar
  10. 10.
    Chertkov, M., Falkovich, G., Kolokolov, I., Lebedev, V.: Statistics of a passive scalar advected by a large-scale two-dimensional velocity field: analytic solution. Phys. Rev. E 51, 5609–5627 (1995) CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Chertkov, M., Kolokolov, G., Vergassola, M.: Inverse cascade and intermittency of passive scalar in one-dimensional smooth flow. Phys. Rev. E 56, 5483–5499 (1997) CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Chertkov, M., Falkovich, G., Kolokolov, I.: Intermittent dissipation of a scalar in turbulence. Phys. Rev. Lett. 80, 2121–2124 (1998) CrossRefADSGoogle Scholar
  13. 13.
    Ching, E.S.C.: Probabilities for temperature differences in Rayleigh–Bénard convection. Phys. Rev. A 44, 3622–3629 (1991) CrossRefADSGoogle Scholar
  14. 14.
    Holzer, M., Siggia, E.D.: Turbulent mixing of a passive scalar. Phys. Fluids 6, 1820–1837 (1994) MATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Kraichnan, R.H.: Small-scale structure of a scalar field convected by turbulence. Phys. Fluids 11, 945–953 (1968) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Majda, A.J.: The random uniform shear layer: an explicit example of turbulent diffusion with broad tail probability distributions. Phys. Fluids A 5, 1963–1970 (1993) MATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Majda, A.J.: Explicit inertial range renormalization theory in a model for turbulent diffusion. J. Stat. Phys. 73(3–4), 515–542 (1993) MATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Majda, A.J., Kramer, P.: Simplified models for turbulent diffusion: Theory, numerical modelling, and physical phenomenon. Phys. Rep. 314, 237–574 (1999) CrossRefMathSciNetGoogle Scholar
  19. 19.
    McLaughlin, R.M., Majda, A.J.: An explicit example with non-Gaussian probability distribution for nontrivial scalar mean and fluctuation. Phys. Fluids 8, 536–547 (1996) MATHCrossRefADSGoogle Scholar
  20. 20.
    Pierrehumbert, R.T.: Lattice models of advection-diffusion. Chaos 10, 61–74 (2000) MATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Pumir, A., Shraiman, B.I., Siggia, E.D.: Exponential tails and random advection. Phys. Rev. Lett. 66(23), 2984–2987 (1991) CrossRefADSGoogle Scholar
  22. 22.
    Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1966) MATHGoogle Scholar
  23. 23.
    Shraiman, B.I., Siggia, E.D.: Lagrangian path integrals and fluctuations in random flow. Phys. Rev. E 49(23), 2912–2927 (1994) CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    She, Z.S., Orszag, S.A.: Physical model of intermittency in turbulence: Inertial range non-Gaussian statistics. Phys. Rev. Lett. 66, 1701–1704 (1991) CrossRefADSGoogle Scholar
  25. 25.
    Sinai, Y.G., Yakhot, V.: Limiting probability distributions of a passive scalar in a random velocity field. Phys. Rev. Lett. 63, 1962–1964 (1989) CrossRefADSGoogle Scholar
  26. 26.
    Sparling, L.C., Bacmeister, J.T.: Scale dependence of trace microstructure: Pdfs, intermittency and the dissipation scale. Geophys. Res. Lett. 28, 2823–2826 (2001) CrossRefADSGoogle Scholar
  27. 27.
    Thoroddsen, S.T., Van Atta, C.W.: Exponential tails and skewness of density-gradient probability density functions in stably stratified turbulence. J. Fluid Mech. 244, 547–566 (1992) CrossRefADSGoogle Scholar
  28. 28.
    Vanden-Eijnden, E.: Non-Gaussian invariant measures for the Majda model of decaying turbulent transport. Commun. Pure Appl. Math. 54(9), 1146–1167 (2001) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Roberto Camassa
    • 1
  • Zhi Lin
    • 1
  • Richard M. McLaughlin
    • 1
  1. 1.Department of MathematicsUniversity of North CarolinaChapel HillUSA

Personalised recommendations