Journal of Statistical Physics

, Volume 128, Issue 3, pp 771–779 | Cite as

A Spatial Stochastic Model for Virus Dynamics



We introduce a spatial stochastic model for virus dynamics. We show that if the death rate of infected cells increases too fast with the virus load the virus dies out. This is in sharp contrast with what happens in the (non-spatial deterministic) basic model for virus dynamics.


virus dynamics mathematical model branching random walks contact process spatial stochastic model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J. van den Berg, G. Grimmett and R. Schinazi, Dependent random graphs and spatial epidemics. An. Appl. Probab. 8:317–336 (1998).MATHCrossRefGoogle Scholar
  2. S. Bonhoeffer, R. M. May, G. M. Shaw and M. A. Nowak, Virus dynamics and drug therapy. Proc. National Aca. Sci. 94:6971–6976 (1997).CrossRefADSGoogle Scholar
  3. R. Durrett, Ten lectures on particle systems. Lecture notes in Mathematics, Vol. 1608 (Springer-Verlag, New York, 1995).Google Scholar
  4. T. Harris, Nearest neighbor interaction processes on multidimensional lattices. Adv. Math. 9:66–89 (1972).MATHCrossRefGoogle Scholar
  5. M. K. Hellerstein et al., Subpopulations of long-lived and short-lived T cells in advanced HIV-1 infection. J. Clin. invest. 112:956–966 (2003).CrossRefGoogle Scholar
  6. T. M. Liggett, Interacting Particle Systems (Springer-Verlag, New York, 1985).MATHGoogle Scholar
  7. M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses. Science 272:74–79 (1996).CrossRefADSGoogle Scholar
  8. M. A. Nowak and R. M. May, Virus Dynamics: Mathematical Principles of Immunology and Virology (Oxford University Press, 2000).Google Scholar
  9. R. Pemantle and A. M. Stacey, The branching random walk and contact process on Galton-Watson and nonhomogeneous trees. Ann. Probab. 29:1563–1590 (2001).MATHCrossRefGoogle Scholar
  10. R. B. Schinazi, On the role of reinfection in the transmission of infectious diseases. J. Theor. Biol. 225:59–63 (2003).CrossRefGoogle Scholar
  11. G. Silvestri and M. B. Feinberg, Turnover of lymphocytes and conceptual para-digms in HIV infection. J. Clin. Invest. 112:821–824 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ColoradoColorado SpringsUSA

Personalised recommendations