Advertisement

Journal of Statistical Physics

, Volume 126, Issue 2, pp 281–298 | Cite as

Equation of State in the Fugacity Format for the Two-Dimensional Coulomb Gas

  • Gabriel Téllez
Article

Abstract

We derive the general form of the equation of state, in the fugacity format, for the two-dimensional Coulomb gas. Our results are valid in the conducting phase of the Coulomb gas, for temperatures above the Kosterlitz–Thouless transition. The derivation of the equation of state is based on the knowledge of the general form of the short-distance expansion of the correlation functions of the Coulomb gas. We explicitly compute the expansion up to order \(O(\zeta^6)\) in the activity ζ. Our results are in very good agreement with Monte Carlo simulations at very low density.

Keywords

Coulomb gas equation of state sine-Gordon model exact results 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6:1181 (1973).CrossRefADSGoogle Scholar
  2. F. H. Stillinger and R. Lovett, General restriction on the distribution of ions in electrolytes. J. Chem. Phys. 49:1991 (1968).CrossRefGoogle Scholar
  3. P. Kalinay and L. Šamaj, Thermodynamic properties of the two-dimensional Coulomb gas in the low density limit. J. Stat. Phys. 106:857 (2002).CrossRefGoogle Scholar
  4. A. M. Salzberg and S. Prager, Equation of state for a two-dimensional electrolyte. J. Chem. Phys. 38:2587 (1963).CrossRefGoogle Scholar
  5. L. Šamaj and I. Travěnec, Thermodynamic properties of the two-dimensional two-component plasma. J. Stat. Phys. 101:713 (2000).CrossRefGoogle Scholar
  6. C. Destri and H. de Vega, New exact results in affine Toda field theories: free energy and wave-function renormalizations. Nucl. Phys. B 358:251 (1991).CrossRefADSGoogle Scholar
  7. Al. Zamolodchikov, Mass scale in the sine-Gordon model and its reductions. Int. J. Mod. Phys. A 10:1125 (1995).CrossRefADSGoogle Scholar
  8. G. Gallavotti and F. Nicoló, The “screening phase transitions” in the two-dimensional Coulomb gas. J. Stat. Phys. 39:133 (1985).CrossRefGoogle Scholar
  9. M. E. Fisher, X.-J. Li and Y. Levin, On the absence of intermediate phases in the two-dimensional Coulomb gas. J. Stat. Phys. 79:1 (1995).CrossRefGoogle Scholar
  10. G. Téllez, Short-distance expansion of correlation functions for the charge-symmetric two-dimensional two-component plasma: exact results. J. Stat. Mech. P10001 (2005).Google Scholar
  11. J. M. Caillol and D. Levesque, Low-density phase diagram of the two-dimensional Coulomb gas. Phys. Rev. B 33:499 (1986).CrossRefADSGoogle Scholar
  12. L. Šamaj and B. Jancovici, Large-distance behavior of particle correlations in the two-dimensional two-component plasma. J. Stat. Phys. 106:301 (2002).CrossRefGoogle Scholar
  13. L. Šamaj, The statistical mechanics of the classical two-dimensional Coulomb gas is exactly solved. J. Phys. A: Math. Gen. 36:5913 (2003).CrossRefADSGoogle Scholar
  14. S. Lukyanov and A. Zamolodchikov, Exact expectation values of local fields in the quantum sine-Gordon model. Nucl. Phys. B 493:571 (1997).CrossRefADSMathSciNetGoogle Scholar
  15. V. Fateev, S. Lukyanov, A. Zamolodchikov, and Al. Zamolodchikov, Expectation values of local fields in the Bullough-Dodd model and integrable perturbed conformal field theories. Nucl. Phys. B 516:652 (1998).CrossRefADSMathSciNetGoogle Scholar
  16. L. Šamaj, Renormalization of Hard-Core Guest Charges Immersed in Two-Dimensional Electrolyte,J. Stat. Phys. 124:1179 (2006).Google Scholar
  17. V. Fateev, D. Fradkin, S. Lukyanov, A. Zamolodchikov, and Al. Zamolodchikov, Expectation values of descendent fields in the sine-Gordon model. Nucl. Phys. B 540:587 (1999).CrossRefADSMathSciNetGoogle Scholar
  18. L. Šamaj, Anomalous effects of “guest” charges immersed in electrolyte: Exact 2D results. J. Stat. Phys. 120:125 (2005).CrossRefMathSciNetGoogle Scholar
  19. V. Dotsenko, M. Picco, and P. Pujol, Renormalisation-group calculation of correlation functions for the 2D random bond Ising and Potts models. Nucl. Phys. B 455:701 (1995).CrossRefADSGoogle Scholar
  20. Wolgram Research, Inc, Mathematica version 5.2.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidad de Los AndesBogotáColombia

Personalised recommendations