Skip to main content
Log in

Residence Time Statistics for Normal and Fractional Diffusion in a Force Field

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We investigate statistics of occupation times for an over-damped Brownian particle in an external force field, using a backward Fokker–Planck equation introduced by Majumdar and Comtet. For an arbitrary potential field the distribution of occupation times is expressed in terms of solutions of the corresponding first passage time problem. This general relationship between occupation times and first passage times, is valid for normal Markovian diffusion and for non-Markovian sub-diffusion, the latter modeled using the fractional Fokker–Planck equation. For binding potential fields we find in the long time limit ergodic behavior for normal diffusion, while for the fractional framework weak ergodicity breaking is found, in agreement with previous results of Bel and Barkai on the continuous time random walk on a lattice. For non-binding cases, rich physical behaviors are obtained, and classification of occupation time statistics is made possible according to whether or not the underlying random walk is recurrent and the averaged first return time to the origin is finite. Our work establishes a link between fractional calculus and ergodicity breaking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. N. Majumdar, Curr. Sci. 89:2076 (2005).

    MathSciNet  Google Scholar 

  2. S. Redner, A Guide to First-Passage Processes (Cambridge University Press, Cambridge, 2001).

    MATH  Google Scholar 

  3. D. A. Darling and M. Kac, Trans. Am. Math. Soc. 84:444 (1957).

    Article  MATH  MathSciNet  Google Scholar 

  4. G. H. Weiss, Aspects and Applications of the Random Walk (North Holland, Amsterdam, 1994).

    MATH  Google Scholar 

  5. A. M. Berezhkovskii, V. Zaloj and N. Agmon, Phys. Rev. E 57:3937 (1998).

    Article  ADS  Google Scholar 

  6. J. Lamperti, Trans. Am. Math. Soc. 88:380 (1958).

    Article  MATH  MathSciNet  Google Scholar 

  7. O. Benichou, M. Coopey, M. Moreau, P. H. Suet and R. Voituriez, Europhys. Lett. 70:42 (2005).

    Article  ADS  Google Scholar 

  8. A. Truman and D. Williams, Diffusion Processes and Related Problems in Analysis Vol. 1, Pinsky, editor (Birkhauser-Boston Inc., 1990).

  9. C. Godreche and J. M. Luck, J. Stat. Phys. 104:489 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  10. G. Margolin and E. Barkai, Phys. Rev. Let. 94:080601 (2005).

    Article  ADS  Google Scholar 

  11. G. Margolin and E. Barkai, J. Stat. Phys. 122:137 (2006).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. G. Margolin, V. Protasenko, M. Kuno and E. Barkai, Advances in Chemical Physics in production, cond-mat/0506512.

  13. G. Bel and E. Barkai, Europhys. Lett. 7415 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  14. R. Marathe and A. Dhar, Phys. Rev. E 72:066112 (2005).

    Article  ADS  Google Scholar 

  15. S. N. Majumdar and A. Comtet, Phys. Rev. Lett. 89:060601 (2002).

    Article  ADS  Google Scholar 

  16. S. Sabhapandit, S. N. Majumdar and A. Comtet, cond-mat/0601455 (2006).

  17. R. Metzler and J. Klafter, Phys. Rep. 339:1 (2000).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. I. M. Sokolov, J. Klafter and A. Blumen, Phys. Today 55:48 (2002).

    Article  Google Scholar 

  19. J.P. Bouchaud and A. Georges, Phys. Rep. 195:127 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  20. R. Metzler, E. Barkai and J. Klafter, Phys. Rev. Lett. 82:3563 (1999).

    Article  ADS  Google Scholar 

  21. E. Barkai, R. Metzler and J. Klafter, Phys. Rev. E 61:132 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  22. G. Bel and E. Barkai, Phys. Rev. Lett. 94:240602 (2005).

    Article  ADS  Google Scholar 

  23. G. Bel and E. Barkai, Phys. Rev. E 73:016125 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Blumen and G. Zumofen J. Chem. Phys. 75:892 (1981); 76:3713 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  25. N. Agmon, J. Chem. Phys. 81:3644 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  26. A. Bar-Haim and J. Klafter, J. Chem. Phys. 109:5187 (1998).

    Article  ADS  Google Scholar 

  27. A. M. Berezhkovskii, A. Szabo and G. H. Weiss, J. Chem. Phys. 110:9145 (1999).

    Article  ADS  Google Scholar 

  28. E. Barkai, Y. Jung and R. Silbey, Annu. Rev. Phys. Chem. 55:457 (2004).

    Article  Google Scholar 

  29. C. Bustamante, J. Liphardt and F. Ritort, Phys. Today 58(7):43 (2005).

    Article  Google Scholar 

  30. G. Zumofen, J. Hohlbein and C. G. Hubner, Phys. Rev. Lett. 93:260601 (2004).

    Article  ADS  Google Scholar 

  31. E. Rhoades, E. Gussakovsky and G. Haran, Proc. Natl. Acad. Sci. USA 100:3197 (2003).

    Article  ADS  Google Scholar 

  32. I. Gopich and A. Szabo, J. Chem. Phys. 122:014707 (2005).

    Article  ADS  Google Scholar 

  33. C. W. Gardiner, Handbook of Stochastic Methods (Springer, Berlin, 2003).

    Google Scholar 

  34. H. Sano and M. Tachiya, J. Chem. Phys. 71:1276 (1979).

    Article  ADS  Google Scholar 

  35. S. N. Majumdar and A. Comtet, Phys. Rev. E 061105 (2002).

  36. V. Balakrishnan, Physica A 132:569 (1985).

    Article  MATH  ADS  Google Scholar 

  37. W. R. Schneider and W. Wyss, J. Math. Phys. 30:134 (1989).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. A. I. Saichev and G. M. Zaslavsky, Chaos 7:753 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. E. Barkai, Chem. Phys. 284:13 (2002).

    Article  ADS  Google Scholar 

  40. R. Gorenflo, A. Vivoli and F. Mainardi, Nonlinear Dyn. 38:101 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  41. E. Barkai, Phys. Rev. E 63:046118 (2001).

    Article  ADS  Google Scholar 

  42. M. M. Meerschaert and H. P. Scheffler, J. Appl. Prob. 41:623 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  43. J. Sung and R. J. Silbey, Phys. Rev. Lett. 91:160601 (2003).

    Article  ADS  Google Scholar 

  44. K. Seki, M. Wojcik and M. Tachiya, J. Chem. Phys. 119:2165 (2003).

    Article  ADS  Google Scholar 

  45. A. V. Chechkin, R. Metzler, V. Y. Gonchar, J. Klafter and L. V. Tanatarov, J. Phys. A—Math. Gen. 36:L537 (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  46. I. Goychuk and P. Hanggi, Phys. Rev. E 70:051915 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  47. G. R. Kneller, Phys. Chem. Chem. Phys. 7:2641 (2005).

    Article  Google Scholar 

  48. W. T. Coffey, J. Mol. Liq. 114:5 (2004).

    Article  Google Scholar 

  49. R. C. Lua and A. Y. Grosberg, Phys. Rev. E 72:061918 (2005).

    Article  ADS  Google Scholar 

  50. G. M. Zaslavsky, Phys. Rep. 371:461 (2002).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  51. E. Barkai, Phys. Rev. Lett. 90:104101 (2003).

    Article  ADS  Google Scholar 

  52. J. P. Bouchaud, J. De Physique I 2:1705 (1992).

    Article  ADS  Google Scholar 

  53. I. G. Sokolov and R. Metzler, Phys. Rev. E 67:010101 (2003).

    Article  ADS  Google Scholar 

  54. A. Dhar and S. N. Majumdar, Phys. Rev. E 59:6413 (1999).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Barkai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barkai, E. Residence Time Statistics for Normal and Fractional Diffusion in a Force Field. J Stat Phys 123, 883–907 (2006). https://doi.org/10.1007/s10955-006-9109-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9109-8

Keywords

Navigation