Journal of Statistical Physics

, Volume 123, Issue 4, pp 883–907 | Cite as

Residence Time Statistics for Normal and Fractional Diffusion in a Force Field



We investigate statistics of occupation times for an over-damped Brownian particle in an external force field, using a backward Fokker–Planck equation introduced by Majumdar and Comtet. For an arbitrary potential field the distribution of occupation times is expressed in terms of solutions of the corresponding first passage time problem. This general relationship between occupation times and first passage times, is valid for normal Markovian diffusion and for non-Markovian sub-diffusion, the latter modeled using the fractional Fokker–Planck equation. For binding potential fields we find in the long time limit ergodic behavior for normal diffusion, while for the fractional framework weak ergodicity breaking is found, in agreement with previous results of Bel and Barkai on the continuous time random walk on a lattice. For non-binding cases, rich physical behaviors are obtained, and classification of occupation time statistics is made possible according to whether or not the underlying random walk is recurrent and the averaged first return time to the origin is finite. Our work establishes a link between fractional calculus and ergodicity breaking.


Weak ergodicity breaking Fractional calculus Backward Fokker–Planck equation Occupation times 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. N. Majumdar, Curr. Sci. 89:2076 (2005).MathSciNetGoogle Scholar
  2. 2.
    S. Redner, A Guide to First-Passage Processes (Cambridge University Press, Cambridge, 2001).MATHGoogle Scholar
  3. 3.
    D. A. Darling and M. Kac, Trans. Am. Math. Soc. 84:444 (1957).MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    G. H. Weiss, Aspects and Applications of the Random Walk (North Holland, Amsterdam, 1994).MATHGoogle Scholar
  5. 5.
    A. M. Berezhkovskii, V. Zaloj and N. Agmon, Phys. Rev. E 57:3937 (1998).CrossRefADSGoogle Scholar
  6. 6.
    J. Lamperti, Trans. Am. Math. Soc. 88:380 (1958).MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    O. Benichou, M. Coopey, M. Moreau, P. H. Suet and R. Voituriez, Europhys. Lett. 70:42 (2005).CrossRefADSGoogle Scholar
  8. 8.
    A. Truman and D. Williams, Diffusion Processes and Related Problems in Analysis Vol. 1, Pinsky, editor (Birkhauser-Boston Inc., 1990).Google Scholar
  9. 9.
    C. Godreche and J. M. Luck, J. Stat. Phys. 104:489 (2001).MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    G. Margolin and E. Barkai, Phys. Rev. Let. 94:080601 (2005).CrossRefADSGoogle Scholar
  11. 11.
    G. Margolin and E. Barkai, J. Stat. Phys. 122:137 (2006).MATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    G. Margolin, V. Protasenko, M. Kuno and E. Barkai, Advances in Chemical Physics in production, cond-mat/0506512.Google Scholar
  13. 13.
    G. Bel and E. Barkai, Europhys. Lett. 7415 (2006).CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    R. Marathe and A. Dhar, Phys. Rev. E 72:066112 (2005).CrossRefADSGoogle Scholar
  15. 15.
    S. N. Majumdar and A. Comtet, Phys. Rev. Lett. 89:060601 (2002).CrossRefADSGoogle Scholar
  16. 16.
    S. Sabhapandit, S. N. Majumdar and A. Comtet, cond-mat/0601455 (2006).Google Scholar
  17. 17.
    R. Metzler and J. Klafter, Phys. Rep. 339:1 (2000).MATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    I. M. Sokolov, J. Klafter and A. Blumen, Phys. Today 55:48 (2002).CrossRefGoogle Scholar
  19. 19.
    J.P. Bouchaud and A. Georges, Phys. Rep. 195:127 (1990).CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    R. Metzler, E. Barkai and J. Klafter, Phys. Rev. Lett. 82:3563 (1999).CrossRefADSGoogle Scholar
  21. 21.
    E. Barkai, R. Metzler and J. Klafter, Phys. Rev. E 61:132 (2000).CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    G. Bel and E. Barkai, Phys. Rev. Lett. 94:240602 (2005).CrossRefADSGoogle Scholar
  23. 23.
    G. Bel and E. Barkai, Phys. Rev. E 73:016125 (2006).CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    A. Blumen and G. Zumofen J. Chem. Phys. 75:892 (1981); 76:3713 (1982).CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    N. Agmon, J. Chem. Phys. 81:3644 (1984)CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    A. Bar-Haim and J. Klafter, J. Chem. Phys. 109:5187 (1998).CrossRefADSGoogle Scholar
  27. 27.
    A. M. Berezhkovskii, A. Szabo and G. H. Weiss, J. Chem. Phys. 110:9145 (1999).CrossRefADSGoogle Scholar
  28. 28.
    E. Barkai, Y. Jung and R. Silbey, Annu. Rev. Phys. Chem. 55:457 (2004).CrossRefGoogle Scholar
  29. 29.
    C. Bustamante, J. Liphardt and F. Ritort, Phys. Today 58(7):43 (2005).CrossRefGoogle Scholar
  30. 30.
    G. Zumofen, J. Hohlbein and C. G. Hubner, Phys. Rev. Lett. 93:260601 (2004).CrossRefADSGoogle Scholar
  31. 31.
    E. Rhoades, E. Gussakovsky and G. Haran, Proc. Natl. Acad. Sci. USA 100:3197 (2003).CrossRefADSGoogle Scholar
  32. 32.
    I. Gopich and A. Szabo, J. Chem. Phys. 122:014707 (2005).CrossRefADSGoogle Scholar
  33. 33.
    C. W. Gardiner, Handbook of Stochastic Methods (Springer, Berlin, 2003).Google Scholar
  34. 34.
    H. Sano and M. Tachiya, J. Chem. Phys. 71:1276 (1979).CrossRefADSGoogle Scholar
  35. 35.
    S. N. Majumdar and A. Comtet, Phys. Rev. E 061105 (2002).Google Scholar
  36. 36.
    V. Balakrishnan, Physica A 132:569 (1985).MATHCrossRefADSGoogle Scholar
  37. 37.
    W. R. Schneider and W. Wyss, J. Math. Phys. 30:134 (1989).MATHCrossRefADSMathSciNetGoogle Scholar
  38. 38.
    A. I. Saichev and G. M. Zaslavsky, Chaos 7:753 (1997).MATHCrossRefADSMathSciNetGoogle Scholar
  39. 39.
    E. Barkai, Chem. Phys. 284:13 (2002).CrossRefADSGoogle Scholar
  40. 40.
    R. Gorenflo, A. Vivoli and F. Mainardi, Nonlinear Dyn. 38:101 (2004).MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    E. Barkai, Phys. Rev. E 63:046118 (2001).CrossRefADSGoogle Scholar
  42. 42.
    M. M. Meerschaert and H. P. Scheffler, J. Appl. Prob. 41:623 (2004).MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    J. Sung and R. J. Silbey, Phys. Rev. Lett. 91:160601 (2003).CrossRefADSGoogle Scholar
  44. 44.
    K. Seki, M. Wojcik and M. Tachiya, J. Chem. Phys. 119:2165 (2003).CrossRefADSGoogle Scholar
  45. 45.
    A. V. Chechkin, R. Metzler, V. Y. Gonchar, J. Klafter and L. V. Tanatarov, J. Phys. A—Math. Gen. 36:L537 (2003).MATHCrossRefADSMathSciNetGoogle Scholar
  46. 46.
    I. Goychuk and P. Hanggi, Phys. Rev. E 70:051915 (2004).CrossRefADSMathSciNetGoogle Scholar
  47. 47.
    G. R. Kneller, Phys. Chem. Chem. Phys. 7:2641 (2005).CrossRefGoogle Scholar
  48. 48.
    W. T. Coffey, J. Mol. Liq. 114:5 (2004).CrossRefGoogle Scholar
  49. 49.
    R. C. Lua and A. Y. Grosberg, Phys. Rev. E 72:061918 (2005).CrossRefADSGoogle Scholar
  50. 50.
    G. M. Zaslavsky, Phys. Rep. 371:461 (2002).MATHCrossRefADSMathSciNetGoogle Scholar
  51. 51.
    E. Barkai, Phys. Rev. Lett. 90:104101 (2003).CrossRefADSGoogle Scholar
  52. 52.
    J. P. Bouchaud, J. De Physique I 2:1705 (1992).CrossRefADSGoogle Scholar
  53. 53.
    I. G. Sokolov and R. Metzler, Phys. Rev. E 67:010101 (2003).CrossRefADSGoogle Scholar
  54. 54.
    A. Dhar and S. N. Majumdar, Phys. Rev. E 59:6413 (1999).CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of PhysicsBar Ilan UniversityRamat-GanIsrael

Personalised recommendations