Advertisement

Journal of Statistical Physics

, Volume 124, Issue 2–4, pp 587–623 | Cite as

Hydrodynamic theory for reverse brazil nut segregation and the non-monotonic ascension dynamics

  • Meheboob Alam
  • L. Trujillo
  • H. J. Herrmann
Article

Abstract

Based on the Boltzmann–Enskog kinetic theory, we develop a hydrodynamic theory for the well known (reverse) Brazil nut segregation in a vibrofluidized granular mixture. Under strong shaking conditions, the granular mixture behaves in some ways like a fluid and the kinetic theory constitutive models are appropriate to close the continuum balance equations for mass, momentum and granular energy. Using this analogy with standard fluid mechanics, we have recently suggested a novel mechanism of segregation in granular mixtures based on a competition between buoyancy and geometric forces: the Archimedean buoyancy force, a pseudo-thermal buoyancy force due to the difference between the energies of two granular species, and two geometric forces, one compressive and the other-one tensile in nature, due to the size-difference. For a mixture of perfectly hard-particles with elastic collisions, the pseudo-thermal buoyancy force is zero but the intruder has to overcome the net compressive geometric force to rise. For this case, the geometric force competes with the standard Archimedean buoyancy force to yield a threshold density-ratio, R ρ 1 = ρ l s < 1, above which the lighter intruder sinks, thereby signalling the onset of the reverse buoyancy effect. For a mixture of dissipative particles, on the other hand, the non-zero pseudo-thermal buoyancy force gives rise to another threshold density-ratio, R ρ 2 (> R ρ 1), above which the intruder rises again. Focussing on the tracer limit of intruders in a dense binary mixture, we study the dynamics of an intruder in a vibrofluidized system, with the effect of the base-plate excitation being taken into account through a 'mean-field' assumption. We find that the rise-time of the intruder could vary nonmonotonically with the density-ratio. For a given size-ratio, there is a threshold density-ratio for the intruder at which it takes the maximum time to rise, and above(/below) which it rises faster, implying that the heavier (and larger) the intruder, the faster it ascends. The peak on the rise-time curve decreases in height and shifts to a lower density-ratio as we increase the pseudo-thermal buoyancy force. The rise (/sink) time diverges near the threshold density-ratio for reverse-segregation. Our theory offers a unified description for the (reverse) Brazil-nut segregation and the nonmonotonic ascension dynamics of Brazil-nuts.

Key words

Granular mixture Brazil-nut segregation Reverse buoyancy Nonmonotonic rise velocity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. J. Herrmann, J.–P. Hovi, and S. Luding, Physics of Dry Granular Media (Kluwer, Dordrecht, 1998); P. G. de Gennes, Granular matter: a tentative view, Rev. Mod. Phys. 71:S374–S382 (1999); J. M. Ottino and D. V. Khakhar, Mixing and segregation of granular materials, Annu. Rev. Fluid Mech. 32:55–91 (2000); A. Kudrolli, Size separation in vibrated granular matter, Rep. Prog. Phys. 67:209–247 (2004)Google Scholar
  2. 2.
    L. R. Brown, Fundamental principles of segregation, J. Inst. Fuel 13:15–19 (1939); S. B. Savage and C. K. Lun, Particle size segregation in inclined chute flow of dry cohesionless granular solid, J. Fluid Mech., 189:311–335 (1988)Google Scholar
  3. 3.
    A. Rosato, K. J. Strandburg, F. Prinz, and R. H. Swendsen, Monte Carlo simulation of particulate matter segregation, Phys. Rev. Lett. 58:1038–1040 (1987)MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    J. B. Knight, H. M. Jaeger, and S. R. Nagel, Vibration-induced size separation in granular media: the convection connection, Phys. Rev. Lett. 70:3728–3731 (1993)CrossRefADSGoogle Scholar
  5. 5.
    J. Duran, J. Rajchenbach, and E. Clément, Arching effect model for particle size segregation, Phys. Rev. Lett. 70:2431–2434 (1993)CrossRefADSGoogle Scholar
  6. 6.
    W. Cooke, S. Warr, J. M. Huntley, and R. C. Ball, Particle size segregation in a two-dimensional bed unergoing vertical vibration, Phys. Rev. E 53:2812–2822 (1996)CrossRefADSGoogle Scholar
  7. 7.
    R. Jullien, P. Meakin, and A. Pavlovitch, Three dimensional model for particle size segregation by shaking, Phys. Rev. Lett. 69:640–643 (1992); S. Dippel and S. Luding, Simulations on size segregation: Geometrical effects in the absence of convection, J. Phys. I (France), 5:1527–1537 (1995); E. Caglioti, A. Coniglio, H. J. Herrmann, V. Loreto, and M. Nicodemi, Segregation of granular mixtures in the presence of compaction, Europhys. Lett. 43:591–597 (1998)Google Scholar
  8. 8.
    S. Luding, E. Clement, A. Blumen, J. Rachenbach, and J. Duran, The onset of convection in molecular dynamics simulations of grains, Phys. Rev. E 50:R1762–R1764 (1994); T. Pöschel and H. J. Herrmann, Size segregation and convection, Europhys. Lett. 29:123–128 (1995); H. Hayakawa, S. Yue, and D. C. Hong, Hydrodynamic description of granular convection, Phys. Rev. Lett. 75:2328–2331 (1995); J. A. C. Gallas, H. J. Herrmann, T. Pöschel, and S. Sokolowski, Molecular dynamics simulation of size segregation in three dimensions, J. Stat. Phys. 82:443–450 (1996)Google Scholar
  9. 9.
    N. Shishodia and C. R. Wassgren, Particle segregation in vibrofluidized beds due to buoyant forces, Phys. Rev. Lett. 87:084302:1–4 (2001)Google Scholar
  10. 10.
    T. Shinbrot and F. J. Muzzio, Reverse buoyancy in shaken granular beds, Phys. Rev. Lett. 81:4365–4368 (1998)CrossRefADSGoogle Scholar
  11. 11.
    D. C. Hong, P. V. Quinn, and S. Luding, Reverse Brazil nut problem: Competition between percolation and condensation, Phys. Rev. Lett 86:3423–3426 (2001)CrossRefADSGoogle Scholar
  12. 12.
    M. E. Möbius, B. E. Lauderdale, S. R. Nagel, and H. M. Jaeger, Size separation of granular particles, Nature 414:270 (2001); K. Liffman, F. Muniandy, M. Rhodes, D. Gutteridge, and G. Metcalfe, A segregation mechanism in a vertically shaken bed, Granular Matter 3:205–214 (2001); D. Sanders, M. R. Swift, R. M. Bowley, and P. J. King, Are Brazil nuts attractive? Phys. Rev. Lett. 93:208002:1–4 (2004)Google Scholar
  13. 13.
    A. P. Breu, H.-M. Ensner, C. A. Kruelle, and I. Rehberg, Reversing the Brazil nut effect: Competition between percolation and condensation, Phys. Rev. Lett. 90:014302:1–3 (2003)Google Scholar
  14. 14.
    L. P. Kadanoff, Built upon sand: Theoretical ideas inspired by granular flows, Rev. Mod. Phys. 71:435–444 (1999); I. Goldhirsch, Rapid granular flows, Annu. Rev. Fluid Mech. 35:267–293 (2003)Google Scholar
  15. 15.
    F. J. Alexander and J. L. Lebowitz, Driven diffusive systems with a moving obstacle: a variation on the Brazil nut problem, J. Phys. A: Math. Gen. 23:L375–L381 (1990)MathSciNetCrossRefADSGoogle Scholar
  16. 16.
    J. A. Both and D. C. Hong, Variational approach to hard-sphere segregation under gravity, Phys. Rev. Lett. 88:124301:1–4 (2002); M. Nicodemi, A. Fierro, and A. Coniglio, Segregation in hard-sphere mixtures under gravity: An extension of the Edwards approach with two thermodynamical parameters, Europhys. Lett. 60:684–690 (2002)Google Scholar
  17. 17.
    J. T. Jenkins and D. K. Yoon, Segregation in binary mixtures under gravity, Phys. Rev. Lett. 88:194301:1–4 (2002)Google Scholar
  18. 18.
    L. Trujillo and H. J. Herrmann, A note on the upward and downward intruder segregation in granular media, Granular Matter 5:85–89 (2003); Hydrodynamic model for particle size segregation in granular media, Physica A 330:519–539 (2003)Google Scholar
  19. 19.
    L. Trujillo, M. Alam, and H. J. Herrmann, Segregation in a fluidized binary granular mixture: Competition between bouyancy and geometric forces, Europhys. Lett. 64:190–196 (2003)CrossRefADSGoogle Scholar
  20. 20.
    J. T. Jenkins and F. Mancini, Balance laws and constitutive relations for plane flows of a dense, binary mixtures of smooth, nearly elastic, circular disks, J. Appl. Mech. 54:27-34 (1987)zbMATHCrossRefGoogle Scholar
  21. 21.
    J. T. Willits and B. Ö. Arnarson, Kinetic theory of a binary mixture of nearly elastic disks, Phys. Fluids 11:3116–3124 (1999); M. Alam, J. T. Willits, B. Ö. Arnarson, and S. Luding, Kinetic theory of a binary mixture of nearly elastic disks with size and mass disparity, Phys. Fluids 14:4085–4087 (2002)Google Scholar
  22. 22.
    V. Garzó and J. W. Dufty, Homogeneous cooling state for a granular mixture, Phys. Rev. E 60:5706–5713 (1999)CrossRefADSGoogle Scholar
  23. 23.
    W. Losert, L. Bocquet, T. C. Lubensky, and J. P. Gollub, Particle dynamics in sheared granular matter, Phys. Rev. Lett. 85:1428–1431 (2000)CrossRefADSGoogle Scholar
  24. 24.
    M. Alam and S. Luding, How good is the equipartition for the transport properties of a granular mixture? Granular Matter 4:137–140 (2002)CrossRefGoogle Scholar
  25. 25.
    M. Alam and S. Luding, Rheology of bidisperse granular mixtures via event-driven simulations, J. Fluid Mech. 476:69–103 (2003); M. Alam and S. Luding, Energy non-equipartition, rheology and microstructure in sheared bidisperse granular mixtures, Phys. Fluids 17:063303:1–18 (2005)Google Scholar
  26. 26.
    A. Barrat and E. Trizac, Lack of energy equipartition in homogeneous heated granular mixtures, Granular Matter 4:57-63 (2002)zbMATHCrossRefGoogle Scholar
  27. 27.
    K. Feitosa and N. Menon, Breakdown of energy equipartition in a 2D binary vibrated granular gas, Phys. Rev. Lett. 88:198301:1–4 (2002)Google Scholar
  28. 28.
    S. Chapman and T. G. Cowling, The Mathematical Theory of Non–uniform Gases (Cambridge University Press, Cambridge, 1970)Google Scholar
  29. 29.
    S. Luding, Global equation of state of two-dimensional hard-sphere systems, Phys. Rev. E 63:042201:1–4 (2001); M. Alam and S. Luding, First normal stress difference and crystallization in a dense sheared granular fluid, Phys. Fluids 15:2298–2312 (2003)Google Scholar
  30. 30.
    G. A. Mansoori, N. F. Carnahan, K. E. Starling, and T. W. Leland Jr., Equilibrium thermodynamic properties of the mixture of hard spheres, J. Chem. Phys. 51:1523–1525 (1971)CrossRefADSGoogle Scholar
  31. 31.
    D. Paolotti, C. Cattuto, U. M. Marconi, and A. Puglisi, Dynamical properties of vibrofluidized granular mixtures, Granular Matter 5:75–83 (2003)CrossRefGoogle Scholar
  32. 32.
    M. Bourzutschky and J. Miller, Granular convection in a vibrated fluid, Phys. Rev. Lett. 74:2216–2219 (1995); J. T. Jenkins and M. W. Richman, Boundary conditions for plane flows of smooth, nearly elastic, circular disks, J. Fluid Mech. 171:53–69 (1986)Google Scholar
  33. 33.
    M. Lopez de Haro and E. D. G. Cohen, The Enskog theory for multicomponent mixtures. III. Transport properties of dense binary mixtures with one tracer component, J. Chem. Phys. 80:408–415 (1984); W. Sung and G. Stell, Transport theory of binary mixture with one trace component of disparate mass, J. Chem. Phys. 77:4636–4649 (1982)Google Scholar
  34. 34.
    R. D. Wildman, J. M. Huntley, and D. J. Parker, Granular temperature profiles in three diemnsional vibrofluidized granular beds, Phys. Rev. E 63:061311:1–10 (2001)Google Scholar
  35. 35.
    O. Zik, J. Stavans, and Y. Rabin, Mobolity of a sphere in vibrated granular media, Europhys. Lett. 17:315–319 (1992)ADSGoogle Scholar
  36. 36.
    M. R. Maxey and J. J. Riley, Equation of motion for a small rigid sphere in a non-uniform flow, Phys. Fluids 26:883–889 (1983)zbMATHCrossRefADSGoogle Scholar
  37. 37.
    X. Yan, Q. Shi, M. Hou, K. Lu, and C. K. Chan, Effects of air on the segregation of particles in a shaken granular bed, Phys. Rev. Lett. 91:014302:1–4 (2003); H. K. Pak, E. Doorn, and R. P. Behringer, Effects of ambient gases on granular materials under vertical vibration, Phys. Rev. Lett. 74:4643–4646 (1995)Google Scholar
  38. 38.
    S. Warr, J. M. Huntley, and T. H. Jacques, Fluidization of a two-dimensional granular system: experimental study and scaling behaviour, Phys. Rev. E 52:5583–5595 (1995); S. McNamara and S. Luding, Energy flows in vibrated granular media Phys. Rev. E 58:813–821 (1998); P. Sunthar and V. Kumaran, Temperature scaling in a dense vibrofluidized granular material, Phys. Rev. E 60:1951–1955 (1999); R. Mikkelsen, D. Meer, K. Welle, and D. Lohse, Competitive clustering in bidisperse granular gas. Phys. Rev. Lett. 89:214301:1–4 (2002)Google Scholar
  39. 39.
    D. A. Huerta and J. C. Ruiz-Suarez, Vibration-induced granular segregation: a phenomenon driven by three mechanisms, Phys. Rev. Lett. 92:114301:1–4 (2004); T. Shinbrot, Granular materials: The Brazil nut effect – in reverse, Nature 429:352 (2004)Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Engineering Mechanics UnitJawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
  2. 2.Centro de FísicaInstituto Venezolano de Investigaciones CentíficasA. P. CaracasVenezuela
  3. 3.Institut für Computer Physik, Pfaffenwaldring 27Universität StuttgartStuttgartGermany

Personalised recommendations