Advertisement

Journal of Statistical Physics

, Volume 123, Issue 2, pp 237–276 | Cite as

Non Equilibrium Current Fluctuations in Stochastic Lattice Gases

  • L. Bertini
  • A. De Sole
  • D. Gabrielli
  • G. Jona-Lasinio
  • C. Landim
Article

Abstract

We study current fluctuations in lattice gases in the macroscopic limit extending the dynamic approach for density fluctuations developed in previous articles. More precisely, we establish a large deviation principle for a space-time fluctuation j of the empirical current with a rate functional I(j). We then estimate the probability of a fluctuation of the average current over a large time interval; this probability can be obtained by solving a variational problem for the functional I. We discuss several possible scenarios, interpreted as dynamical phase transitions, for this variational problem. They actually occur in specific models. We finally discuss the time reversal properties of I and derive a fluctuation relationship akin to the Gallavotti-Cohen theorem for the entropy production.

Key words

Stationary non equilibrium states Stochastic lattice gases Current fluctuations Gallavotti-Cohen symmetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Annunziata, L. Paduano, A. J. Pearlstein, D. G. Miller, and J. G. Albright, Extraction of thermodynamic data from ternary diffusion coefficients ... J. Am. Chem. Soc. 122:5916–5928 (2000) and references therein.Google Scholar
  2. 2.
    G. Basile and G. Jona–Lasinio, Equilibrium states with macroscopic correlations. Int. J. Mod. Phys. B 18:479–485 (2004).Google Scholar
  3. 3.
    L. Bertini, A. De Sole, D. Gabrielli, G. Jona–Lasinio and C. Landim, Fluctuations in stationary non equilibrium states of irreversible processes. Phys. Rev. Lett. 87:040601 (2001).Google Scholar
  4. 4.
    L. Bertini, A. De Sole, D. Gabrielli, G. Jona–Lasinio and C. Landim, Macroscopic fluctuation theory for stationary non equilibrium state. J. Statist. Phys. 107:635–675 (2002).Google Scholar
  5. 5.
    L. Bertini, A. De Sole, D. Gabrielli, G. Jona–Lasinio and C. Landim, Large deviations for the boundary driven simple exclusion process. Math. Phys. Anal. Geom. 6:231–267 (2003).Google Scholar
  6. 6.
    L. Bertini, A. De Sole, D. Gabrielli, G. Jona–Lasinio and C. Landim, Minimum dissipation principle in stationary non equilibrium states. J. Statist. Phys. 116:831–841 (2004).Google Scholar
  7. 7.
    L. Bertini, A. De Sole, D. Gabrielli, G. Jona–Lasinio and C. Landim, Current fluctuations in stochastic lattice gases. Phys. Rev. Lett. 94:030601 (2005).Google Scholar
  8. 8.
    L. Bertini, D. Gabrielli and J. L. Lebowitz, Large deviations for a stochastic model of heat flow. J. Statist. Phys. to appear.Google Scholar
  9. 9.
    T. Bodineau and B. Derrida, Current fluctuations in non-equilibrium diffusive systems: an additivity principle. Phys. Rev. Lett. 92:180601 (2004).Google Scholar
  10. 10.
    T. Bodineau and B. Derrida, Private Communication.Google Scholar
  11. 11.
    T. Bodineau and B. Derrida, Distribution of current in non-equilibrium diffusive systems and phase transitions. Preprint 2005, arXiv: cond-mat/0506540.Google Scholar
  12. 12.
    B. Derrida, B. Douçot and P.-E. Roche, Current fluctuations in the one-dimensional symmetric exclusion process with open boundaries. J. Statist. Phys. 115:717–748 (2004).Google Scholar
  13. 13.
    B. Derrida, J. L. Lebowitz and E. R. Speer, Free energy functional for nonequilibrium systems: an exactly solvable case. Phys. Rev. Lett. 87:150601 (2001).Google Scholar
  14. 14.
    B. Derrida, J. L. Lebowitz and E. R. Speer, Large deviation of the density profile in the steady state of the open symmetric simple exclusion process. J. Statist. Phys. 107:599–634 (2002).Google Scholar
  15. 15.
    B. Derrida, J. L. Lebowitz and E. R. Speer, Exact large deviation functional of a stationary open driven diffusive system: the asymmetric exclusion process. J. Statist. Phys. 110:775–810 (2003).Google Scholar
  16. 16.
    J.-P. Eckmann, C.-A. Pillet and L. Rey–Bellet, Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures, Commun. Math. Phys. 201:657–697 (1999).Google Scholar
  17. 17.
    A. Einstein, Talk given at the Zurich Physical Society in November 1910 reproduced in French translation in Séminaires Poincaré, “Einstein 1905–2005”, April 2005. See also A. Pais, “Subtle is the Lord”, Oxford University Press, 1982 and the references therein.Google Scholar
  18. 18.
    G. Gallavotti and E. G. D. Cohen, Dynamical ensembles in stationary states. J. Statist. Phys. 80:931–970 (1995).Google Scholar
  19. 19.
    R. J. Harris, A. Rákos and G. M. Schuetz, Current fluctuations in the zero-range process with open boundaries. J. Stat. Mech. P08003 (2005).Google Scholar
  20. 20.
    A. N. Jordan, E. V. Sukhorukov and S. Pilgram, Fluctuation statistics in networks: a stochastic path integral approach. J. Math. Phys. 45:4386–4417 (2004).Google Scholar
  21. 21.
    C. Kipnis and C. Landim, Scaling limits of interacting particle systems. Berlin, Springer (1999).Google Scholar
  22. 22.
    C. Kipnis, C. Marchioro and E. Presutti, Heat flow in an exactly solvable model. J. Statist. Phys. 27:65–74 (1982).Google Scholar
  23. 23.
    C. Kipnis, S. Olla and S.R.S. Varadhan, Hydrodynamics and large deviations for simple exclusion processes. Commun. Pure Appl. Math. 42, 115–137 (1989).Google Scholar
  24. 24.
    J. Kurchan, Fluctuation theorem for stochastic dynamics. J. Phys. A: Math. Gen. 31:3719–3729 (1998).Google Scholar
  25. 25.
    L. Landau and E. Lifshitz, Physique Statistique, MIR Moscou (1967).Google Scholar
  26. 26.
    J. L. Lebowitz and H. Spohn, A Gallavotti-Cohen type symmetry in the large deviation functional for stochastic dynamics. J. Statist. Phys. 95:333–365 (1999).Google Scholar
  27. 27.
    L. S. Levitov, H.-W. Lee and G. B. Lesovik, Electron counting statistics and coherent states of electric current. J. Math. Phys. 37:4845–4866 (1996).Google Scholar
  28. 28.
    C. Maes, F. Redig and M. Verschuere, Entropy production for interacting particle systems. Markov Process. Related Fields 7, 119–134 (2001).Google Scholar
  29. 29.
    L. Onsager, Reciprocal relations in irreversible processes. I. Phys. Rev. 37:405–426 (1931). II. Phys. Rev. 38:2265–2279 (1931).Google Scholar
  30. 30.
    L. Onsager and S. Machlup, Fluctuations and irreversible processes. Phys. Rev. 91:1505–1512 (1953); Phys. Rev. 91:1512–1515 (1953).Google Scholar
  31. 31.
    S. Pilgram, A. N. Jordan, E. V. Sukhorukov and Büttiker M., Stochastic path integral formulation of full counting statistics. Phys. Rev. Lett. 90:206801 (2003).Google Scholar
  32. 32.
    P.-E. Roche, B. Derrida and B. Douçot, Mesoscopic full counting statistics and exclusion models. Eur. Phys. J. B 43:529–541 (2005).Google Scholar
  33. 33.
    H. Spohn, Large scale dynamics of interacting particles. Berlin, Springer(1991).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • L. Bertini
    • 1
  • A. De Sole
    • 2
    • 3
  • D. Gabrielli
    • 4
  • G. Jona-Lasinio
    • 5
  • C. Landim
    • 6
    • 7
  1. 1.Dipartimento di MatematicaUniversità di Roma La SapienzaRomaItaly
  2. 2.INDAMUniversità di Roma La SapienzaRomaItaly
  3. 3.Department of MathematicsHarvard UniversityCambridgeUSA
  4. 4.Dipartimento di MatematicaUniversità dell'AquilaCoppitoItaly
  5. 5.Dipartimento di Fisica and INFNUniversità di Roma “La Sapienza”RomaItaly
  6. 6.IMPARio de JaneiroBrasil
  7. 7.CNRS UMR 6085Université de RouenMont-Saint-Aignan CedexFrance

Personalised recommendations