Advertisement

Journal of Statistical Physics

, Volume 123, Issue 3, pp 615–629 | Cite as

Large Deviations for the Fermion Point Process Associated with the Exponential Kernel

  • Tomoyuki Shirai
Article

Abstract

For the fermion point process on the whole complex plane associated with the exponential kernel \(e^{z\bar{w}}\), we show the central limit theorem for the random variable ξ(D r , the number of points inside the ball D r of radius r, as r → ∞ and we establish the large deviation principle for the random variables {r −2ξ (D r ), r > 0}.

Key words

fermion point process determinantal point process Ginibre ensemble exactly solvable large deviations exponential kernel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 3.
    J. H. Hannay, Chaotic analytic zero points: Exact statistics for those of a random spin state, J. Phys. A: Math. Gen. 29:101–105 (1996).MathSciNetCrossRefADSGoogle Scholar
  2. 2.
    J.-P. Kahane, Some random series of functions, 2nd Ed. (Cambridge University Press, Cambridge, 1985).Google Scholar
  3. 3.
    P. Leboeuf, Random analytic chaotic eigenstates, J. Statist. Phys. 95:651–664 (1999).MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    M. Sodin, Zeros of Gaussian analytic functions, Math. Res. Lett. 7:371–381 (2000).MATHMathSciNetGoogle Scholar
  5. 5.
    Y. Peres and B. Virág, Zeros of the i.i.d. Gaussian power series: a conformally invariant determinantal process, Acta Mathematica 194:1–35.Google Scholar
  6. 6.
    M. Sodin and B. Tsirelson, Random complex zeroes, III. Decay of the hole probability, Israel J. Math. 147:371–379 (2005).MathSciNetGoogle Scholar
  7. 7.
    J. Ginibre, Statistical ensembles of complex, quaternion and real matrices, J. Math. Phys. 6:440–449 (1965).MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    B. Jancovici, J. L. Lebowitz, and G. Manificat, Large charge fluctuations in classical Coulomb systems, J. Statist. Phys. 72:773–787 (1993).MathSciNetCrossRefGoogle Scholar
  9. 9.
    J. H. Hannay, Saddle points in the chaotic analytic function and Ginibre characteristic polynomial, J. Phys. A: Math. Gen. 36:3379–3383 (2003).MATHMathSciNetCrossRefADSGoogle Scholar
  10. 10.
    Ph. A. Martin and T. Yalcin, The charge fluctuations in classical Coulomb systems, J. Statist. Phys. 22:435–463 (1980).MathSciNetCrossRefGoogle Scholar
  11. 11.
    A. Soshnikov, Determinantal random point fields, Russian Math. Surveys 55:923–975 (2000).MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    T. Shirai and Y. Takahashi, Random point fields associated with certain Fredholm determinants I: Fermion, Poisson and Boson processes, J. Funct. Anal. 205:414–463 (2003).MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    O. Macchi. The coincidence approach to stochastic point processes, Adv. Appl. Prob. 7:83–122 (1975).MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    O. Costin and J. L. Lebowitz, Gaussian fluctuation in random matrices, Phys. Rev. Lett. 75:69–72 (1995).CrossRefADSGoogle Scholar
  15. 15.
    A. Soshnikov, Gaussian fluctuation for the number of particles in Airy, Bessel and sine and other determinantal random point fields, J. Statist. Phys. 100:491–522 (2000).MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    A. Soshnikov, Gaussian limit for determinantal random point fields, Ann. Probab. 30:171–187 (2002).MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    J. B. Hough, M. Krishnapur, Y. Peres, and B. Virág, Determinantal Processes and Independence, available via arXiv:math.PR/0503110, (2005).Google Scholar
  18. 18.
    B. Rider, Order statistics and Ginibre's ensembles, J. Statist. Phys. 114:1139–1148 (2004).MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    B. Rider, Deviations from the circular law, Probab. Theory Related Fields 130:337–367 (2004).MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    J. D. Deuschel and D. W. Stroock, Large Deviations (Academic Press, Boston) (1989).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Faculty of MathematicsKyushu UniversityFukuokaJapan

Personalised recommendations