Journal of Statistical Physics

, Volume 123, Issue 1, pp 55–87 | Cite as

On the Becker/Döring Theory of Nucleation of Liquid Droplets in Solids



Nucleation of liquid precipitates in semi-insulating GaAs is accompanied by deviatoric stresses resulting from the liquid/solid misfit. A competition of surface tension and stress deviators at the interface determines the nucleation barrier.

The evolution of liquid precipitates in semi-insulating GaAs is due to diffusional processes in the vicinity of the droplet. The diffusion flux results from a competition of chemical and mechanical driving forces.

The size distribution of the precipitates is determined by a Becker--Dö-ring system. The study of its properties in the presence of deviatoric stresses is the subject of this study. The main tasks of this study are: (i) We propose a new Becker/Döring model that takes thermomechanical coupling into account. (ii) We compare the current model with already existing models from the literature. Irrespective of the incorporation of mechanical stresses, the various models differ due to different environments where the evolution of precipitates takes place. (iii) We determine the structure of equilibrium solutions according to the Becker/Döring model, and we compare these solutions with those that result from equilibrium thermodynamics.


Nucleation kinetics of phase transitions Surface stress GaAs elasticity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. M. Ball, J. Carr, and O. Penrose, The Becker-Döring cluster equations: Basic properties and asymptotic behaviour of solutions. Commun. Math. Phy. 104:657–692 (1986).MATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    W. Band, Dissociation treatment of condensing systems. J. Chem. Phy. 7:324–326 (1939).CrossRefADSGoogle Scholar
  3. 3.
    R. Becker and W. Döring, Kinetische Behandlung der Keimbildung in übersättigten Dämpfen. Annalen der Physik (5. Folge) 24:719–752 (1935).MATHCrossRefADSGoogle Scholar
  4. 4.
    J. J. Burton, Nucleation theory, Statistical Mechanics, Part A: Equilibrium Techniques (Berne, B. J. ed.), Plenum Press, New York pp. 195–234 (1977).Google Scholar
  5. 5.
    J. Carr, D. B. Duncan, and C. H. Walshaw, Numerical approximation of a metastable system. IMA J. Numer. Anal. 15(4):505–521 (1995).MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    R. Clausius, Über eine veränderte Form des zweiten Hauptsatzes der mechanischen Wärmetheorie Poggendorf's Annalen XCIII:481 (1854), (also in: Phil. Mag. 4th Ser. Vol. XII:81; Journ. de Liouville t. XX:63.Google Scholar
  7. 7.
    W. Dreyer and F. Duderstadt, On the modelling of semi-insulating GaAs including surface tension and bulk stresses. WIAS-Preprint 995, (2004).Google Scholar
  8. 8.
    W. Dreyer and F. Duderstadt, On the dynamics of the thermodynamic consistent Becker-Döring model. in preparation.Google Scholar
  9. 9.
    W. Dreyer, F. Duderstadt, and S. Qamar, Diffusion in the vicinity of an evolving spherical arsenic droplet. WIAS-Preprint 996 (2004).Google Scholar
  10. 10.
    Dreyer, F. Duderstadt, St. Eichler, and M. Jurisch, Stress analysis and bending tests for GaAs wafer. WIAS-Preprint 897 (2003).Google Scholar
  11. 11.
    F. Duderstadt, Anwendung der von Kármán'schen Plattentheorie und der Hertz'schen Pressung für die Spannungsanalyse zur Biegung von GaAs-Wafern im modifizierten Doppelringtest, PhD thesis, Technical University Berlin 2003, also published as WIAS-Report, no. 24.Google Scholar
  12. 12.
    D. B. Duncan and A. R. Soheili, Approximating the Becker-Döring cluster equations. Appl. Numer. Math. 37(1–2):1–29 (2001).MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    L. Farkas, Keimbildungsgeschwindigkeit in übersättigten Dämpfen. Zeitschrift für physikalische Chemie 125:236–242 (1927).Google Scholar
  14. 14.
    J. I. Frenkel, Journal experimentalnoi i teoreticheskoi fisiki 9(8):952–962 (1939), also in Englisch: A general theory of heterophase fluctuations and pretransition phenomena. J. Chem. Phy. 7:538–547 (1939).Google Scholar
  15. 15.
    J. I. Frenkel, Isgatelstwo akagemii nauk SSSR, Moscow (1945) (second corrected and extended edition in English: Kinetic theory of liquids, Oxford University Press, Oxford (1946), reprint: Dover, New York (1955); German translation of the first edition, corrected and translated by H. Friedrich, W. Ludwig and F. R. Bachmann: Kinetische Theorie der Flüssigkeiten, Deutscher Verlag der Wissenschaften, Berlin (1957)).Google Scholar
  16. 16.
    J. W. Gibbs, On the equilibrium of heterogeneous substances, Transactions of the Connecticut Academy of Arts and Sciences, Third Series XVI(96):343–524 (1878).Google Scholar
  17. 17.
    M. Herrmann, B. Niethammer, and M. Naldzhieva, On a thermodynamically consistent modification of the Becker-Döring equations. MATHEON-Preprint 228 (2005), submitted to Physica D.Google Scholar
  18. 18.
    D. Kashchiev, Nucleation, Butterworth-Heinemann Oxford (2000).Google Scholar
  19. 19.
    F. Kuhrt, Das Tröpfchenmodell realer Gase. Zeitschrift für Physik 131:185–204 (1952).MATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    F. Kuhrt, Das Tröpfchenmodell übersättigter realer Gase. Zeitschrift für Physik 131:204–214 (1952).ADSGoogle Scholar
  21. 21.
    I. M. Lifshitz and V. V. Slyozov, Kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Sol. 19:35–50 (1961).CrossRefADSGoogle Scholar
  22. 22.
    J. Lothe and G. M. Pound, Reconsiderations of Nucleation Theory. J. Chem. Phy. 36(8):2080–2085 (1962).CrossRefADSGoogle Scholar
  23. 23.
    I. Müller, Thermodynamics, Interaction of Mechanics and Mathematics Series, Pitman Advanced Publishung Program, Boston (1985).Google Scholar
  24. 24.
    I. Müller, Grundzüge der Thermodynamik, 3. ed., Springer, Berline (2001) 1. Auflage (1994).Google Scholar
  25. 25.
    B. Niethammer, On the Dynamics of the Becker-Döring Equations, Habilitation Thesis, University of Bonn, Bonn (2002).Google Scholar
  26. 26.
    B. Niethammer, On the Evolution of Large Clusters in the Becker-Döring Model J. Nonlinear Sci. 13(1):115–155 (2003).MATHCrossRefADSMathSciNetGoogle Scholar
  27. 27.
    O. Penrose, Metastable states for the Becker-Döring cluster equations. Commun. Math. Phy. 124:515–541 (1989).MATHCrossRefADSMathSciNetGoogle Scholar
  28. 28.
    O. Penrose, The Becker-Döring equations at large times and their connection with the LSW theory of coarsening. Commun. Math. Phy. 189(1/2):305–320 (1997).Google Scholar
  29. 29.
    O. Penrose and A. Buhagiar, Kinetics of nucleation in lattice gas models: Microscopic theory and simulation compared. J. Stat. Phy. 30:219–241 (1983).CrossRefADSGoogle Scholar
  30. 30.
    O. Penrose and J. L. Lebowitz, Towards a rigorous molecular theory of metastability, Fluctuation Phenomena (E. W. Montroll and J. L. Lebowitz, eds.), Studies in Statical Mechanics, vol. VII, North-Holland, pp. 293–340 (1979).Google Scholar
  31. 31.
    O. Penrose, J. L. Lebowitz, J. Marro, M. Kalos, and J. Tobochnik, Kinetics of a first-order phase transition: Computer simulations and theory. J. Stat. Phy. 34:399–426 (1984).CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    H. Reiss and J. L. Katz, Resolution of the Translation-Rotation Paradox of Irreversible Condensation. J. Chem. Phy. 46(7):2496–2499 (1967).CrossRefADSGoogle Scholar
  33. 33.
    W. Thomson, On the equilibrium of vapour at a curved surface of liquid. Proc. Roy. Soc. 7(63) (1870).Google Scholar
  34. 34.
    M. Volmer, Über Keimbildung und Keimwirkung als Spezialfälle der heterogen Katalyse. Zeitschrift für Elektrochemie 35(9):555–561 (1929).Google Scholar
  35. 35.
    M. Volmer, Kinetik der Phasenbildung, Verlag von Theodor Steinkopff, Dresden (1939), (English translation: Kinetics of phase formation, Clearinghouse for Federal and Technical Information, ATI No. 81935 [F-TS-7068-RE].Google Scholar
  36. 36.
    M. Volmer and H. Flood, Zeitschrift für physikalische Chemie, Abt. A, 170:237 (1934).Google Scholar
  37. 37.
    M. Volmer and A. Weber, Keimbildung in übersättigten Gebilden, Zeitschrift für physikalische Chemie, Abt. A 119:277–301 (1926).Google Scholar
  38. 38.
    C. Wagner, Theorie der Alterung von Niederschlägen durch Umlösen. Zeitschrift für Elektrochemie 65:581–594 (1961).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Weierstrass Institute for Applied Analysis and StochasticsBerlinGermany

Personalised recommendations