Skip to main content
Log in

On the Becker/Döring Theory of Nucleation of Liquid Droplets in Solids

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Nucleation of liquid precipitates in semi-insulating GaAs is accompanied by deviatoric stresses resulting from the liquid/solid misfit. A competition of surface tension and stress deviators at the interface determines the nucleation barrier.

The evolution of liquid precipitates in semi-insulating GaAs is due to diffusional processes in the vicinity of the droplet. The diffusion flux results from a competition of chemical and mechanical driving forces.

The size distribution of the precipitates is determined by a Becker--Dö-ring system. The study of its properties in the presence of deviatoric stresses is the subject of this study. The main tasks of this study are: (i) We propose a new Becker/Döring model that takes thermomechanical coupling into account. (ii) We compare the current model with already existing models from the literature. Irrespective of the incorporation of mechanical stresses, the various models differ due to different environments where the evolution of precipitates takes place. (iii) We determine the structure of equilibrium solutions according to the Becker/Döring model, and we compare these solutions with those that result from equilibrium thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. M. Ball, J. Carr, and O. Penrose, The Becker-Döring cluster equations: Basic properties and asymptotic behaviour of solutions. Commun. Math. Phy. 104:657–692 (1986).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. W. Band, Dissociation treatment of condensing systems. J. Chem. Phy. 7:324–326 (1939).

    Article  ADS  Google Scholar 

  3. R. Becker and W. Döring, Kinetische Behandlung der Keimbildung in übersättigten Dämpfen. Annalen der Physik (5. Folge) 24:719–752 (1935).

    Article  MATH  ADS  Google Scholar 

  4. J. J. Burton, Nucleation theory, Statistical Mechanics, Part A: Equilibrium Techniques (Berne, B. J. ed.), Plenum Press, New York pp. 195–234 (1977).

  5. J. Carr, D. B. Duncan, and C. H. Walshaw, Numerical approximation of a metastable system. IMA J. Numer. Anal. 15(4):505–521 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  6. R. Clausius, Über eine veränderte Form des zweiten Hauptsatzes der mechanischen Wärmetheorie Poggendorf's Annalen XCIII:481 (1854), (also in: Phil. Mag. 4th Ser. Vol. XII:81; Journ. de Liouville t. XX:63.

  7. W. Dreyer and F. Duderstadt, On the modelling of semi-insulating GaAs including surface tension and bulk stresses. WIAS-Preprint 995, (2004).

  8. W. Dreyer and F. Duderstadt, On the dynamics of the thermodynamic consistent Becker-Döring model. in preparation.

  9. W. Dreyer, F. Duderstadt, and S. Qamar, Diffusion in the vicinity of an evolving spherical arsenic droplet. WIAS-Preprint 996 (2004).

  10. Dreyer, F. Duderstadt, St. Eichler, and M. Jurisch, Stress analysis and bending tests for GaAs wafer. WIAS-Preprint 897 (2003).

  11. F. Duderstadt, Anwendung der von Kármán'schen Plattentheorie und der Hertz'schen Pressung für die Spannungsanalyse zur Biegung von GaAs-Wafern im modifizierten Doppelringtest, PhD thesis, Technical University Berlin 2003, also published as WIAS-Report, no. 24.

  12. D. B. Duncan and A. R. Soheili, Approximating the Becker-Döring cluster equations. Appl. Numer. Math. 37(1–2):1–29 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  13. L. Farkas, Keimbildungsgeschwindigkeit in übersättigten Dämpfen. Zeitschrift für physikalische Chemie 125:236–242 (1927).

    Google Scholar 

  14. J. I. Frenkel, Journal experimentalnoi i teoreticheskoi fisiki 9(8):952–962 (1939), also in Englisch: A general theory of heterophase fluctuations and pretransition phenomena. J. Chem. Phy. 7:538–547 (1939).

    Google Scholar 

  15. J. I. Frenkel, Isgatelstwo akagemii nauk SSSR, Moscow (1945) (second corrected and extended edition in English: Kinetic theory of liquids, Oxford University Press, Oxford (1946), reprint: Dover, New York (1955); German translation of the first edition, corrected and translated by H. Friedrich, W. Ludwig and F. R. Bachmann: Kinetische Theorie der Flüssigkeiten, Deutscher Verlag der Wissenschaften, Berlin (1957)).

  16. J. W. Gibbs, On the equilibrium of heterogeneous substances, Transactions of the Connecticut Academy of Arts and Sciences, Third Series XVI(96):343–524 (1878).

    Google Scholar 

  17. M. Herrmann, B. Niethammer, and M. Naldzhieva, On a thermodynamically consistent modification of the Becker-Döring equations. MATHEON-Preprint 228 (2005), submitted to Physica D.

  18. D. Kashchiev, Nucleation, Butterworth-Heinemann Oxford (2000).

  19. F. Kuhrt, Das Tröpfchenmodell realer Gase. Zeitschrift für Physik 131:185–204 (1952).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. F. Kuhrt, Das Tröpfchenmodell übersättigter realer Gase. Zeitschrift für Physik 131:204–214 (1952).

    ADS  Google Scholar 

  21. I. M. Lifshitz and V. V. Slyozov, Kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Sol. 19:35–50 (1961).

    Article  ADS  Google Scholar 

  22. J. Lothe and G. M. Pound, Reconsiderations of Nucleation Theory. J. Chem. Phy. 36(8):2080–2085 (1962).

    Article  ADS  Google Scholar 

  23. I. Müller, Thermodynamics, Interaction of Mechanics and Mathematics Series, Pitman Advanced Publishung Program, Boston (1985).

  24. I. Müller, Grundzüge der Thermodynamik, 3. ed., Springer, Berline (2001) 1. Auflage (1994).

  25. B. Niethammer, On the Dynamics of the Becker-Döring Equations, Habilitation Thesis, University of Bonn, Bonn (2002).

  26. B. Niethammer, On the Evolution of Large Clusters in the Becker-Döring Model J. Nonlinear Sci. 13(1):115–155 (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. O. Penrose, Metastable states for the Becker-Döring cluster equations. Commun. Math. Phy. 124:515–541 (1989).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. O. Penrose, The Becker-Döring equations at large times and their connection with the LSW theory of coarsening. Commun. Math. Phy. 189(1/2):305–320 (1997).

    Google Scholar 

  29. O. Penrose and A. Buhagiar, Kinetics of nucleation in lattice gas models: Microscopic theory and simulation compared. J. Stat. Phy. 30:219–241 (1983).

    Article  ADS  Google Scholar 

  30. O. Penrose and J. L. Lebowitz, Towards a rigorous molecular theory of metastability, Fluctuation Phenomena (E. W. Montroll and J. L. Lebowitz, eds.), Studies in Statical Mechanics, vol. VII, North-Holland, pp. 293–340 (1979).

  31. O. Penrose, J. L. Lebowitz, J. Marro, M. Kalos, and J. Tobochnik, Kinetics of a first-order phase transition: Computer simulations and theory. J. Stat. Phy. 34:399–426 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  32. H. Reiss and J. L. Katz, Resolution of the Translation-Rotation Paradox of Irreversible Condensation. J. Chem. Phy. 46(7):2496–2499 (1967).

    Article  ADS  Google Scholar 

  33. W. Thomson, On the equilibrium of vapour at a curved surface of liquid. Proc. Roy. Soc. 7(63) (1870).

  34. M. Volmer, Über Keimbildung und Keimwirkung als Spezialfälle der heterogen Katalyse. Zeitschrift für Elektrochemie 35(9):555–561 (1929).

    Google Scholar 

  35. M. Volmer, Kinetik der Phasenbildung, Verlag von Theodor Steinkopff, Dresden (1939), (English translation: Kinetics of phase formation, Clearinghouse for Federal and Technical Information, ATI No. 81935 [F-TS-7068-RE].

  36. M. Volmer and H. Flood, Zeitschrift für physikalische Chemie, Abt. A, 170:237 (1934).

    Google Scholar 

  37. M. Volmer and A. Weber, Keimbildung in übersättigten Gebilden, Zeitschrift für physikalische Chemie, Abt. A 119:277–301 (1926).

    Google Scholar 

  38. C. Wagner, Theorie der Alterung von Niederschlägen durch Umlösen. Zeitschrift für Elektrochemie 65:581–594 (1961).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Dreyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dreyer, W., Duderstadt, F. On the Becker/Döring Theory of Nucleation of Liquid Droplets in Solids. J Stat Phys 123, 55–87 (2006). https://doi.org/10.1007/s10955-006-9024-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9024-z

KeyWords

Navigation