Advertisement

Journal of Statistical Physics

, Volume 121, Issue 5–6, pp 995–1014 | Cite as

Renormalization and Quantum Scaling of Frenkel–Kontorova Models

  • Nuno R. Catarino
  • Robert S. MacKay
Article

Abstract

We generalise the classical Transition by Breaking of Analyticity for the class of Frenkel–Kontorova models studied by Aubry and others to non-zero Planck’s constant and temperature. This analysis is based on the study of a renormalization operator for the case of irrational mean spacing using Feynman’s functional integral approach. We show how existing classical results extend to the quantum regime. In particular we extend MacKay’s renormalization approach for the classical statistical mechanics to deduce scaling of low frequency effects and quantum effects. Our approach extends the phenomenon of hierarchical melting studied by Vallet, Schilling and Aubry to the quantum regime

Keywords

Transition by breaking of analyticity renormalization quantum scaling specific heat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Aubry, The devil’s stair case transformation in incommensurate lattices, in The Riemann Problem, Complete Integrability and Arithmetic Solutions, vol. 925 of Springer Lecture Notes in Mathematics. D. Chudnovsky and G. Chudnovsky, eds. (Springer-Verlag, 1982).Google Scholar
  2. 2.
    Aubry, S. 1983Devil’s staircase and order without periodicity in classical condensed matterJ. de Physique44147162MathSciNetCrossRefGoogle Scholar
  3. 3.
    Aubry, S. 1983The twist map, the extended Frenkel–Kontorova model and the devil’s staircasePhysica D7240258CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Aubry, S., Abramovici, G. 1990Chaotic trajectories in the standard map The concept of anti–integrabilityPhysica D43199219CrossRefADSMathSciNetzbMATHGoogle Scholar
  5. 5.
    Aubry, S., Le Daeron, P.Y. 1983The discrete Frenkel–Kontorova model and its extensionsPhysica D8381422CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Berman, G.P., Bulgakov, E.N., Campbell, D.K. 1994Coherent structures in the ground state of the quantum Frenkel–Kontorova modelPhys. Rev. B4982128226CrossRefADSGoogle Scholar
  7. 7.
    Berman, G.P., Bulgakov, E.N., Campbell, D.K. 1997Rugged landscapes and the “Quantori” ground state of 1D quantum systems of adatoms on substratesPhysica D107161165ADSGoogle Scholar
  8. 8.
    Borgonovi, F., Guarneri, I., Shepelyansky, D. 1989Quantum effects in the Frenkel–Kontorova modelPhys. Rev. Lett.6320102012CrossRefADSGoogle Scholar
  9. 9.
    Borgonovi, F., Guarneri, I., Shepelyansky, D. 1990Destruction of classical cantori in the quantum Frenkel–Kontorova modelZeitschrift für Physik B79133142ADSGoogle Scholar
  10. 10.
    O. M. Braun and Y. S. Kivshar, The Frenkel–Kontorova Model, Concepts, Methods, and Applications (Springer-Verlag, 2004).Google Scholar
  11. 11.
    N. R. Catarino, Quantum Statistical Mechanics of Generalised Frenkel–Kontorova Models. PhD thesis, Mathematics Institute, University of Warwick (2004).Google Scholar
  12. 12.
    N. R. Catarino and R. S. MacKay, Quantum statistical mechanics of Frenkel–Kontorova models. in Localization and Energy Transfer in Nonlinear Systems L. Vázquez, R. S. MacKay, and M.-P. Zorzano, eds. World-Scientific, (2003), pp. 315–319.Google Scholar
  13. 13.
    Giachetti, R., Tognetti, V. 1985Variational approach to quantum statistical mechanics of nonlinear systems with application to sine–GordonPhys. Rev. Lett55912915CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Giachetti, R., Tognetti, V. 1986Quantum corrections to the thermodynamics of nonlinear systemsPhys. Rev. B3376477658ADSGoogle Scholar
  15. 15.
    Greene, J.M. 1979A method for determining a stochastic transitionJ. Math. Phys2011831201CrossRefADSGoogle Scholar
  16. 16.
    Ho, C.-L., Chou, C.-I. 2000Simple variational approach to the quantum Frenkel–Kontorova modelPhys. Rev. E63016203ADSGoogle Scholar
  17. 17.
    Hu, B., Li, B., Zang, W.-M. 1998Quantum Frenkel–Kontorova model: A squeezed state approachPhys. Rev. E58R4068R4071ADSGoogle Scholar
  18. 18.
    Koch, H. 2004A renormalization group fixed point associated with the breakup of golden invariant toriDiscrete Contin. Dynam. Syst11881909zbMATHGoogle Scholar
  19. 19.
    MacKay, R.S. 1991Scaling exponents at the transition by breaking of analyticity for incommensurate structuresPhysica D507179CrossRefADSzbMATHMathSciNetGoogle Scholar
  20. 20.
    R. S. MacKay, Renormalisation in Area–Preserving Maps, volume 6 of Advanced Series in Nonlinear Dynamics (World-Scientific, 1993).Google Scholar
  21. 21.
    MacKay, R.S. 1995The classical statistical mechanics of Frenkel–Kontorova modelsJ. Stat. Phys804567CrossRefADSzbMATHMathSciNetGoogle Scholar
  22. 22.
    J. W. Negele and H. Orland, Quantum Many-Particle Systems (Perseus Books 1998).Google Scholar
  23. 23.
    Peyrard, M., Aubry, S. 1983Critical behaviour at the transition by breaking of analyticity in the discrete Frenkel–Kontorova modelJ. Phys. C1615931608CrossRefADSGoogle Scholar
  24. 24.
    Schilling, R., Aubry, S. 1987The static structure factor of one-dimensional non-analytic incommensurate structuresJ. Phys. C2048814889CrossRefADSGoogle Scholar
  25. 25.
    Vallet, F., Schilling, R., Aubry, S. 1986Hierarchical low-temperature behaviour of one-dimensional incommensurate structuresEurophys. Lett2815822ADSGoogle Scholar
  26. 26.
    Vallet, F., Schilling, R., Aubry, S. 1988Low-temperature excitations, specific heat and hierarchical melting of a one-dimensional incommensurate structureJ. Phys. C2167105CrossRefADSGoogle Scholar
  27. 27.
    Zhirov, O.V., Casati, G., Shepelyansky, D.L. 2003Quantum phase transition in the Frenkel–Kontorova chain: From pinned instanton glass to sliding phonon gasPhys. Rev. E67056209ADSGoogle Scholar
  28. 28.
    J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Oxford University Press, 2002 [1989]).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Mathematics InstituteUniversity of WarwickCoventryU.K
  2. 2.School of Mathematical and Computer Sciences, Colin Maclaurin BuildingHeriot-Watt UniversityEdinburghU.K

Personalised recommendations