Journal of Statistical Physics

, Volume 121, Issue 5–6, pp 749–757 | Cite as

Critical Slowing Down in One-Dimensional Maps and Beyond

  • Bailin Hao


This is a brief review on critical slowing down near the Feigenbaum period-doubling bifurcation points and its consequences. The slowing down of numerical convergence leads to an “operational” fractal dimension D=2/3 at a finite order bifurcation point. There is a cross-over to D0=0.538... when the order goes to infinity, i.e., to the Feigenbaum accumulation point. The problem of whether there exists a “super-scaling” for the dimension spectrum D q W that does not depend on the primitive word W underlying the period-n-tupling sequence seems to remain open


Period doubling attractor fractal dimension critical slowing down 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Feigenbaum, M.J. 1978J. Stat. Phys1925CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Feigenbaum, M.J. 1979J. Stat. Phys21669CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Hu, B. 1982Phys. Rep91233CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Kaplan, J.L., Yorke, J.A. 1979Lecture Notes in Math.730228MathSciNetGoogle Scholar
  5. 5.
    Grassberger, P. 1981J. Stat. Phys26173MathSciNetGoogle Scholar
  6. 6.
    H. Haken, ed. Order and Chaos in Nature (Springer-Verlag, 1981).Google Scholar
  7. 7.
    Hao, B.-L., Zhang, S.-Y. 1982J. Stat. Phys28769CrossRefMathSciNetGoogle Scholar
  8. 8.
    Hao, B.-L., Zheng, W.-M. 1998Applied Symbolic Dynamics and ChaosWorld ScientificSingaporeGoogle Scholar
  9. 9.
    Zhou, G.-Z., Su, Z.-B., Hao, B.-L., Yu, L. 1980Phys. Rev. B223385CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Suzuki, M., Kaneko, K., Sasagawa, F. 1981Program Theory Phys65828ADSMathSciNetGoogle Scholar
  11. 11.
    Huberman, B.A., Rudnick, J. 1980Phys. Rev. Lett45154CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Shrainman, B., Wayne, C.E., Martin, P.C. 1981Phys. Rev. Lett46935ADSMathSciNetGoogle Scholar
  13. 13.
    Hao, B.-L. 1981Phys. LettA86267ADSMathSciNetGoogle Scholar
  14. 14.
    Franszek, M., Pieranski, P. 1985Canadian J. Phys63488ADSGoogle Scholar
  15. 15.
    Grassberger, P., Scheunert, M. 1981J. Stat. Phys26697MathSciNetGoogle Scholar
  16. 16.
    Wang, Y.-Q., Chen, S.-G. 1984Acta Physica Sinica33341(in Chinese)MathSciNetGoogle Scholar
  17. 17.
    Hu, G., Hao, B.-L. 1983Commun. Theory. Phys21473MathSciNetGoogle Scholar
  18. 18.
    Zeng, W.-Z., Hao, B.-L., Wang, G.R., Chen, S.G. 1984Commun. Theory Phys3283MathSciNetGoogle Scholar
  19. 19.
    Zeng, W.-Z., Hao, B.-L. 1986Chin. Phys. Lett3285Google Scholar
  20. 20.
    Wang, G.-R., Chen, S.-G. 1986Acta Physica Sinica3558(in Chinese)MathSciNetGoogle Scholar
  21. 21.
    Zheng, W.-M. 1990Phys LettA143362ADSGoogle Scholar
  22. 22.
    Yang, W.-M., Zheng, W.-M. 1992Commun. Theory Phys17151MathSciNetGoogle Scholar
  23. 23.
    Christiansen, P., Cvitanović, P., Rugh, H.H. 1990J. PhysA23L713ADSGoogle Scholar
  24. 24.
    Grassberger, P., Procaccia, I. 1983PhysicaD9189ADSMathSciNetGoogle Scholar
  25. 25.
    Hao, B.-L. 1989Elementary Symbolic Dynamics and Chaos in Dissipative SystemsWorld ScientificSingaporeGoogle Scholar
  26. 26.
    Cao K.-F. (1988). Master Thesis. Department of Physics.Yunnan University, Kunmin ChinaGoogle Scholar
  27. 27.
    S.-L. Peng and K.-F. Cao, Phys. Lett. A131:261; A133:543 (1988).Google Scholar
  28. 28.
    Cao, K.-F., Liu, R.-L., Peng, S.-L. 1989Phys. LettA136213ADSMathSciNetGoogle Scholar
  29. 29.
    Cao, K.-F., Peng, S.-L. 1992J. Phys. A25589CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.T-Life Research CenterFudan UniversityShanghaiChina
  2. 2.Institute of Theoretical PhysicsAcademia SinicaBeijingChina

Personalised recommendations