Journal of Statistical Physics

, Volume 121, Issue 5–6, pp 805–822 | Cite as

Statistics of Stretching Fields in Experimental Fluid Flows Exhibiting Chaotic Advection

  • P. E. Arratia
  • J. P. Gollub


Stretching fields and their statistical properties are studied experimentally for four distinct two-dimensional time-periodic confined fluid flows exhibiting chaotic advection: a random vortex array for two different Reynolds numbers, a set of parallel shear layers, and a vortex lattice. The flows are driven electromagnetically, and they are studied by means of precise particle velocimetry. We find that for a given flow, the probability distributions of log S (where S is the local stretching in N cycles) can be nearly superimposed for different N when log S is rescaled using the geometrical mean of the stretching distribution. The rescaled stretching fields for a given flow at various N are highly correlated spatially when N is large. Finally, the scaled distributions for different flows are similar, though there are some differences connected to the degree of spatial symmetry and time-reversibility of the flows.


Stretching statistics chaotic advection mixing in fluids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Pierrehumbert, RT. 1991Large-scale horizontal mixing in planetary atmospheresPhys. Fluids A312501260CrossRefADSGoogle Scholar
  2. Akira, T., Rogers, RA., Hydon, PE., Butler, JP. 2002Chaotic mixing deep in the lung, ProcNatl. Acad. Sci.991017310178Google Scholar
  3. Batchelor, GK. 1952The effect of homogeneous turbulence on material lines and surfacesProc. R. Soc. London Ser. A213349368ADSMATHMathSciNetGoogle Scholar
  4. Aref, H. 1984Stirring by chaotic advectionJ. Fluid Mech.143121ADSMATHMathSciNetGoogle Scholar
  5. Ottino, JM., Muzzio, FJ., Tjahjadi, M., Franjione, JG., Jana, S.C, Kusch, HA. 1992Chaos, symmetry, and self-similarity: Exploiting order and disorder in mixing processesScience257754760ADSGoogle Scholar
  6. Tang, X.Z., Boozer, AH. 1996Finite time Lyapunov exponent and advection–diffusion equationPhysica D95283305CrossRefMathSciNetGoogle Scholar
  7. Voth, GA., Haller, G., Gollub, JP. 2002Experimental measurements of stretching fields in fluid mixingPhys. Rev. Lett.88254501ADSGoogle Scholar
  8. Ottino JM. The Kinematics of Mixing: Stretching, Chaos, and Transport. (Cambridge University Press, 1989)Google Scholar
  9. Voth, GA., Saint, TC., Dobler, G., Gollub, JP. 2003Mixing rates and symmetry breaking in two-dimensional chaotic flowPhys Fluids1525602566CrossRefADSMathSciNetGoogle Scholar
  10. Ott, E., Antonsen, TM. 1989Fractal measures of passively convected vector fields and scalar gradients in chaotic fluid flowsPhys. Rev. A3936603671ADSGoogle Scholar
  11. Varosi, F., Antonsen, TM., Ott, E. 1991The spectrum of fractal dimensions of passively convected scalar gradients in chaotic fluid flowsPhys. Fluids A310171028ADSMathSciNetGoogle Scholar
  12. Muzzio, FJ., Swanson, PD., Ottino, JM. 1991The statistics of stretching and stirring in chaotic flowsPhys. Fluids3822834ADSMathSciNetGoogle Scholar
  13. Sepulveda, MA., Badii, R., Pollak, E. 1989Spectral analysis of conservative dynamical systemsPhys. Rev. Lett.6312261229ADSGoogle Scholar
  14. Pierrehumbert, RT. 2002Decay of passive scalars under the action of single scale smooth velocity fields in bounded two-dimensional domains: From non-self-similar probability distribution functions to self-similar eigenmodesPhys. Rev. E.66056302ADSMathSciNetGoogle Scholar
  15. Abraham, E.R., Bowen, MM. 2002Chaotic stirring by a mesoscale surface ocean-flowChaos12373381ADSMathSciNetGoogle Scholar
  16. Prasad, A., Ramaswamy, R. 1999Characteristic distributions of finite-time Lyapunov exponentsPhys. Rev. E.6027612766CrossRefADSGoogle Scholar
  17. Oseledec, VI. 1968A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systemsTrans. Moscow Math. Soc.19197231MATHMathSciNetGoogle Scholar
  18. Androver, A., Giona, M. 1998Long-range correlation properties of area-preserving chaotic systemsPhysica A253143153Google Scholar
  19. Beigie, D., Leonard, A., Wiggins, S. 1991A global study of enhanced stretching and diffusion in chaotic tanglesPhys. Fluids A310391050CrossRefADSMathSciNetGoogle Scholar
  20. Muzzio, FJ., Meneveau, C., Swanson, PD., Ottino, JM. 1992Scaling and multifractal properties of mixing in chaotic flowsPhys. Fluids A414391456CrossRefADSMathSciNetGoogle Scholar
  21. Franjione, J.G., Ottino, JM. 1992Symmetry concepts for the geometric analysis of mixing flowsPhil. Trans. R. Soc Lond. A338301323ADSGoogle Scholar
  22. Ellis, RS. 1985Entropy, Large Deviations, and Statistical MechanicsSpringer-VerlagNew YorkGoogle Scholar
  23. Horita, T., Hata, H., Mori, H. 1990Long-time correlations and expansion-rate spectra of chaos in Hamiltonian systemsProg Theor. Phys.8310651070CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Physics DepartmentHaverford CollegeHaverfordUSA
  2. 2.Physics DepartmentUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations