Journal of Statistical Physics

, Volume 122, Issue 4, pp 647–670 | Cite as

Random Cluster Models on the Triangular Lattice

  • L. Chayes
  • H. K. Lei


We study percolation and the random cluster model on the triangular lattice with 3-body interactions. Starting with percolation, we generalize the star–triangle transformation: We introduce a new parameter (the 3-body term) and identify configurations on the triangles solely by their connectivity. In this new setup, necessary and sufficient conditions are found for positive correlations and this is used to establish regions of percolation and non-percolation. Next we apply this set of ideas to the q > 1 random cluster model: We derive duality relations for the suitable random cluster measures, prove necessary and sufficient conditions for them to have positive correlations, and finally prove some rigorous theorems concerning phase transitions.

Key Words

percolation random cluster models Potts models star–triangle relations FKG inequalities 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Aizenman, J. T. Chayes, L. Chayes and C. M. Newman, Discontinuity of the Magnetization in One-Dimensional 1/|x − y|2 Ising and Potts Models, J. Stat. Phys. 77:351–359 (1994).CrossRefGoogle Scholar
  2. 2.
    J. Ashkin and E. Teller, Statistics of Two-Dimensional Lattices with Four Components, Phys. Rev. 64:178–184 (1943).ADSGoogle Scholar
  3. 3.
    T. Baker and L. Chayes. On the Unicity of Discontinuous Transitions in the Two-Dimensional Potts and Ashkin-Teller Models, Jour. Stat. Phys. 93:1–15 (1998).MathSciNetGoogle Scholar
  4. 4.
    R. J. Baxter, N. H. V. Temperley and S. E. Ashley, Triangular Potts Model at Its Transition Temperature, and Related Models, Proc. R. Soc. A 358:535–539 (1978).Google Scholar
  5. 5.
    Theodore W. Burkhardt, Applications of an Exact Duality-Decimation Transformation for Two-Dimensional Spin Systems on a Square Lattice, Physical Review B. 20 no. 7, 2905–2913 (1979).Google Scholar
  6. 6.
    R. M. Burton and M. Keane, Density and Uniqueness in Percolation, Comm. Math. Phys. 121 no. 3, 501–505 (1989).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    J. T. Chayes and L. Chayes, The Correct Extension of the Fortuin-Kasteleyn Result to Plaquette Percolation, Nuclear Physics B 235:19–23 (1983).Google Scholar
  8. 8.
    L. Chayes, Percolation and Ferromagnetism on ℤ2: the q-state Potts Cases, Stochastic Processes and Their Applications 65:209–216 (1996).Google Scholar
  9. 9.
    L. Chayes and J. Machta, Graphical Representations and Cluster Algorithms I. Discrete spin systems, Physica A 239:542–601 (1997).Google Scholar
  10. 10.
    L. Chayes and J. Machta, Graphical Representations and Cluster Algorithms II, Physica A 254:477–516 (1998).Google Scholar
  11. 11.
    L. Chayes and K. Shtengel, Critical Behavior for 2D Uniform and Disordered Ferromagnets at Self-Dual Points, Comm. Math. Phys. 204:353–366 (1999).CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    E. Domany and E. K. Riedel, Two-Dimensional Anisotropic N-Vector Models, Phys. Rev. B 19:5817–5834 (1979).Google Scholar
  13. 13.
    R. G. Edwards and A. D. Sokal, Generalization of the Fortuin-Kasteleyn-Swendsen-Wang Representation and Monte Carlo Algorithm, Phys. Rev. D. 38:2009–2012 (1988).CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Essam and Syskes, Dimensional Crossover in Selective Site Percolation, J. Math. Phys. 5:1117–27 (1964).Google Scholar
  15. 15.
    C. M. Fortuin and P. W. Kasteleyn, On the Random-Cluster Model. I. Introduction and Relation to Other Models, Physica 57:536–564 (1972).CrossRefMathSciNetGoogle Scholar
  16. 16.
    G. Grimmett, Percolation. Berlin, New York: Springer Verlag (1999).Google Scholar
  17. 17.
    G. Grimmett, Potts models and random-cluster models with many-body interactions, J. Stat. Phys. 75:67–121 (1994).CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    A. Gandolfi, G. Grimmett and L. Russo, On the Uniqueness of the Infinite Open Cluster in the Percolation Model, Comm. Math. Phys. 113:549–552 (1988).ADSMathSciNetGoogle Scholar
  19. 19.
    A. Gandolfi, M. Keane and L. Russo, On the Uniqueness of the Infinite Cluster in Dependent Two-Dimensional Site Percolation, Annals of Prob. 16:1147–1157 (1988).MathSciNetGoogle Scholar
  20. 20.
    D. Kim and R. I. Joseph, Exact Transition Temperature of the Potts Model With q States Per Site for the Triangular and Honeycomb Lattices, J. Phys. C. 7:L167 (1974).CrossRefADSGoogle Scholar
  21. 21.
    H. A. Kramers and G. H. Wannier, Statistics of the Two-Dimensional Ferromagnet, I. Phys. Rev. (2) 60:252–262 (1941).Google Scholar
  22. 22.
    T. M. Liggett, Interacting Particle Systems, Berlin, New York: Springer Verlag (2005).Google Scholar
  23. 23.
    J. Machta, Y. S. Choi, A. Lucke, T. Schweizer and L. V. Chayes, Invaded Cluster Algorithm for Equilibrium Critical Points, Phys. Rev. Lett. 75:2792–2795 (1995).CrossRefADSGoogle Scholar
  24. 24.
    M. V. Menshikov, Coincidence of Critical Points in Percolation Problems, Soviet Mathematics Doklady 33:856–859 (1986).MATHGoogle Scholar
  25. 25.
    M. V. Menshikov, S. A., Molchanov and A. F. Sidorenko, Percolation Theory and Some Applications. Itogi Nauki i Techniki, Series of Probability Theory, Mathematical Statistics, Theoretical Cybernetics 24:53–110 (1986).Google Scholar
  26. 26.
    C. E. Pfister, Phase Transitions in the Ashkin-Teller Model, J. Stat. Phys. 29:115–118 (1982).CrossRefMathSciNetGoogle Scholar
  27. 27.
    D. Reimer, Proof of the vanden Berg-Kesten Conjecture, Combin. Probab. Comput. 9 no. 1, 27–32 (2000).CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    L. Russo, A Note on Percolation. Z. Wahrscheinlichkeitstheorie und Verw, Gebiete 43 no. 1, 39–48 (1978).Google Scholar
  29. 29.
    L. Russo, On the Critical Percolation Probabilities. Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete 56:229–237 (1981).Google Scholar
  30. 30.
    V. Strassen, The Existence of Probability Measures with Given marginals, Ann. Math. Statist. 36:423–439 (1965).MATHMathSciNetGoogle Scholar
  31. 31.
    R. H. Swendsen and J. S. Wang, Nonuniversal Critical Dynamics in Monte Carlo Simulations, Phys. Rev. Lett. 58:86–88 (1987).CrossRefADSGoogle Scholar
  32. 32.
    F. J. Wegner, Duality Relation Between the Ashkin-Teller and the Eight-Vertex Model, J. Phys. C 5:L131–132 (1972).CrossRefADSGoogle Scholar
  33. 33.
    J. C. Wierman, Bond Percolation On Honeycomb and Triangular Lattices, Adv. in Appl. Probab. 13:298–313 (1981).MATHMathSciNetGoogle Scholar
  34. 34.
    J. C. Wierman, A Bond Percolation Critical Probability Determination Based On the Star-Triangle Transformation, J. Phys. A. 17:1525–1530 (1984).ADSMathSciNetGoogle Scholar
  35. 35.
    F. Y. Wu and K. Y. Lin, On the Triangular Potts Model With Two- and Three-Site Interaction, J. Phys. A 13:629–636 (1980).CrossRefADSGoogle Scholar
  36. 36.
    F. Y. Wu, The Potts Model, Rev. Mod. Phys. 54:235–268 (1982).CrossRefADSGoogle Scholar
  37. 37.
    F. Y. Wu and R. K. P. Zia, Critical Point of a Triangular Potts Model With Two- and Three-Site Interactions, Journal of Physics A. 14:721–727 (1981).MathSciNetGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • L. Chayes
    • 1
  • H. K. Lei
    • 1
  1. 1.Department of MathematicsUCLALos AngelesUSA

Personalised recommendations