Skip to main content
Log in

Dissipation and Decoherence in a Quantum Oscillator

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The time development of the reduced density matrix for a quantum oscillator damped by coupling it to an ohmic environment is calculated via an identity of the Debye-Waller form. Results obtained some years ago by Hakim and the author in the free-particle limit(10) are thus recovered. The evolution of a free particle in a prepared initial state is examined, and a previously published exchange(5,9) is illuminated with figures showing no decoherence without dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See, e.g., V. Ambegaokar, in G. T. Moore and M. O. Scully eds., NATO ASI Series B: Physics, Vol. 135, p. 231 (1984).

  2. V. Ambegaokar, Ber. Bunsenges. Phys. Chem. 95:400 (1991).

    Google Scholar 

  3. LC A. O. Caldeira and A. J. Leggett, Physica 121A:587 (1983).

    ADS  MathSciNet  Google Scholar 

  4. I. Chiorescu et al. Nature 431(7005):159 (2004).

    Article  ADS  Google Scholar 

  5. G. W. Ford and R. F. O’Connell, Phys. Rev. A 70:026102 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  6. G. W. Ford, J. T. Lewis and R. F O’Connell, Phys. Rev A 64:032101 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  7. G. W. Ford and R. F. O’Connell, Phys. Lett. 286:87 (2001); Am. J. Phys. 70:319 (2002).

    Article  MathSciNet  Google Scholar 

  8. A. Garg, J. Onuchic and V. Ambegaokar J. Chem Phys. 83:4491 (1985).

    Article  ADS  Google Scholar 

  9. D. Gobert, J. von Delft, and V. Ambegaokar, Phys. Rev. A 70:026101 (2004). See also arXiv:quant-ph/0306019 by the same authors.

    Article  ADS  MathSciNet  Google Scholar 

  10. V. Hakim and V. Ambegaokar, Phys. Rev. A 32:423 (1985).

    Article  ADS  Google Scholar 

  11. F. Marquardt and D. S. Golubev, Phys. Rev. A 72:022113 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  12. J. Martinis, M. H. Devoret and J. Clarke, Phys. Rev. B 35:4682 (1987).

    Article  ADS  Google Scholar 

  13. N. D. Mermin, J. Math. Phys. 7:1038 (1966).

    Article  MathSciNet  Google Scholar 

  14. H. Spohn, Rev. Mod. Phys. 52:569 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  15. M. Thorwant et al. Chem. Phys. 296:333 (2004).

    Article  Google Scholar 

  16. N. G. van Kampen, J. Stat. Phys. 115:1057 (2004). Similar methods are used in G. W. Ford, J. T. Lewis, and R. F O’Connell, J. Stat. Phys. 53:439 (1988). Citations of the considerable early literature on heat baths treated as continua of harmonic oscillators are contained in these two references.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

PACS number: 03.75.Ss

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ambegaokar, V. Dissipation and Decoherence in a Quantum Oscillator. J Stat Phys 125, 1183–1192 (2006). https://doi.org/10.1007/s10955-005-8018-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-8018-6

Key Words

Navigation