Advertisement

Journal of Statistical Physics

, Volume 125, Issue 5–6, pp 1183–1192 | Cite as

Dissipation and Decoherence in a Quantum Oscillator

  • Vinay Ambegaokar
Article

Abstract

The time development of the reduced density matrix for a quantum oscillator damped by coupling it to an ohmic environment is calculated via an identity of the Debye-Waller form. Results obtained some years ago by Hakim and the author in the free-particle limit(10) are thus recovered. The evolution of a free particle in a prepared initial state is examined, and a previously published exchange(5,9) is illuminated with figures showing no decoherence without dissipation.

Key Words

Quantum oscillator dissipation time evolution of reduced density matrix Debye-Waller identity Decoherence no decoherence without dissipation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See, e.g., V. Ambegaokar, in G. T. Moore and M. O. Scully eds., NATO ASI Series B: Physics, Vol. 135, p. 231 (1984).Google Scholar
  2. 2.
    V. Ambegaokar, Ber. Bunsenges. Phys. Chem. 95:400 (1991).Google Scholar
  3. 3.
    LC A. O. Caldeira and A. J. Leggett, Physica 121A:587 (1983).ADSMathSciNetGoogle Scholar
  4. 4.
    I. Chiorescu et al. Nature 431(7005):159 (2004).CrossRefADSGoogle Scholar
  5. 5.
    G. W. Ford and R. F. O’Connell, Phys. Rev. A 70:026102 (2004).CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    G. W. Ford, J. T. Lewis and R. F O’Connell, Phys. Rev A 64:032101 (2001).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    G. W. Ford and R. F. O’Connell, Phys. Lett. 286:87 (2001); Am. J. Phys. 70:319 (2002).CrossRefMathSciNetGoogle Scholar
  8. 8.
    A. Garg, J. Onuchic and V. Ambegaokar J. Chem Phys. 83:4491 (1985).CrossRefADSGoogle Scholar
  9. 9.
    D. Gobert, J. von Delft, and V. Ambegaokar, Phys. Rev. A 70:026101 (2004). See also arXiv:quant-ph/0306019 by the same authors.CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    V. Hakim and V. Ambegaokar, Phys. Rev. A 32:423 (1985).CrossRefADSGoogle Scholar
  11. 11.
    F. Marquardt and D. S. Golubev, Phys. Rev. A 72:022113 (2005).CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    J. Martinis, M. H. Devoret and J. Clarke, Phys. Rev. B 35:4682 (1987).CrossRefADSGoogle Scholar
  13. 13.
    N. D. Mermin, J. Math. Phys. 7:1038 (1966).CrossRefMathSciNetGoogle Scholar
  14. 14.
    H. Spohn, Rev. Mod. Phys. 52:569 (1980).CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    M. Thorwant et al. Chem. Phys. 296:333 (2004).CrossRefGoogle Scholar
  16. 16.
    N. G. van Kampen, J. Stat. Phys. 115:1057 (2004). Similar methods are used in G. W. Ford, J. T. Lewis, and R. F O’Connell, J. Stat. Phys. 53:439 (1988). Citations of the considerable early literature on heat baths treated as continua of harmonic oscillators are contained in these two references.CrossRefMATHGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Vinay Ambegaokar
    • 1
  1. 1.Laboratory of Atomic and Solid State PhysicsCornell UniversityIthaca

Personalised recommendations