Journal of Statistical Physics

, Volume 122, Issue 3, pp 511–529 | Cite as

A Theory on Flat Histogram Monte Carlo Algorithms



The flat histogram Monte Carlo algorithms have been successfully used in many problems in scientific computing.However, there is no a rigorous theory for the convergence of the algorithms. In this paper, a modified flat histogram algorithm is presented and its convergence is studied. The convergence of the multicanonical algorithm and the Wang-Landau algorithm is argued based on their relations to the modified algorithm. The numerical results show the superiority of the modified algorithm to the multicanonical and Wang-Landau algorithms.

Key Words

Convergence Contour Monte Carlo Multicanonical Wang-Landau Algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B.A. Berg and T. Neuhaus, Phys. Lett. B. 267:291 (1991); Phys. Rev. Lett. 68:9 (1992); B.A. Berg and T. Celik, Phys. Rev. Lett. 69:2292 (1992).Google Scholar
  2. 2.
    F. Wang and D.P. Landau, Phys. Rev. Lett. 86:2050 (2001); Phys. Rev. E. 64:56101 (2001).Google Scholar
  3. 3.
    U.H.E. Hansmann and Y. Okamoto, Journal of Computational Chemistry 18:920 (1997).Google Scholar
  4. 4.
    N. Rathore and J.J. de Pablo, Journal of Chemical Physics 116:7225 (2002).Google Scholar
  5. 5.
    R. Faller and J.J. de Pablo, Journal of Chemical Physics 119:4405 (2003).Google Scholar
  6. 6.
    N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller, J. Chem. Phys. 21:1087 (1953); W.K. Hastings, Biometrika 57:97 (1970).Google Scholar
  7. 7.
    B. Hesselbo and R. B. Stinchcombe, Phys. Rev. Lett. 74:2151 (1995).Google Scholar
  8. 8.
    F. Liang, Phys. Rev. E 69:66701 (2004).Google Scholar
  9. 9.
    F. Liang, unpublished.Google Scholar
  10. 10.
    H. Robbins and S. Monro, Ann. Math. Stat. 22:400 (1951).Google Scholar
  11. 11.
    J. R. Blum, Ann. Math. Stat. 25:737 (1954).Google Scholar
  12. 12.
    A. Benveniste, M. Métivier, and P. Priouret, Adaptive Algorithms and Stochastic Approximations. New York: Springer-Verlag (1990).Google Scholar
  13. 13.
    B. A. Berg, in Monte Carlo and Quasi-Monte Carlo Methods 2000, eds. K. T. Fang, F. J. Hickernell, and H. Niederreiter, New York: Springer, pp. 168 (2000).Google Scholar
  14. 14.
    C. Zhou and R. N. Bhatt, cond-mat/0306711 (2003).Google Scholar
  15. 15.
    Q. Yan and J. J. de Pablo, Phys. Rev. Lett. 90:035701 (2003). Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of StatisticsTexas A&M UniversityCollege StationUSA

Personalised recommendations