Journal of Statistical Physics

, Volume 121, Issue 5–6, pp 1073–1081 | Cite as

Dynamics of Triangulations

  • P. Collet
  • J. -P. Eckmann


We study a few problems related to Markov processes of flipping triangulations of the sphere. We show that these processes are ergodic and mixing, but find a natural example which does not satisfy detailed balance. In this example, the expected distribution of the degrees of the nodes seems to follow the power law d−4.


Ergodicity detailed balance power laws 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Forman, R. 2003Bochner’s method for cell complexes and combinatorial Ricci curvatureDiscrete Comput. Geom.29323374MATHMathSciNetGoogle Scholar
  2. 2.
    Godrèche, C., Kostov, I., Yekutieli, I. 1992Topological correlations in cellular structures and planar graph theoryPhys. Rev. Lett.6926742677CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Magnasco, M. O. 2992Two-dimensional bubble raftsPhil. Mag. B.65895920Google Scholar
  4. 4.
    Magnasco, M. O. 1994Correlations in celluar patternsPhil. Mag. B69397429Google Scholar
  5. 5.
    Malyshev, V. A. 1999Probability related to quantum gravitation: planar gravitationUspekhi Mat. Nauk54346MATHMathSciNetGoogle Scholar
  6. 6.
    S. Negami, Diagonal flips of triangulations on surfaces, a survey. In: Proceedings of the 10th Workshop on Topological Graph Theory (Yokohama, 1998), Vol. 47 (1999).Google Scholar
  7. 7.
    Tutte, W. T. 1962A census of planar triangulationsCanad. J. Math.142138MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Centre de Physique Théorique, CNRS UMR 7644Ecole PolytechniqueCedexFrance
  2. 2.Département de Physique ThéoriqueUniversité de GenèveSwitzerland
  3. 3.Section de MathématiquesUniversité de GenèveSwitzerland

Personalised recommendations