Journal of Statistical Physics

, Volume 120, Issue 5–6, pp 779–798 | Cite as

Spectral Degeneracies in the Totally Asymmetric Exclusion Process

  • O. Golinelli
  • K. Mallick


We study the spectrum of the Markov matrix of the totally asymmetric exclusion process (TASEP) on a one-dimensional periodic lattice at arbitrary filling. Although the system does not possess obvious symmetries except translation invariance, the spectrum presents many multiplets with degeneracies of high order when the size of the lattice and the number of particles obey some simple arithmetic rules. This behaviour is explained by a hidden symmetry property of the Bethe Ansatz. Assuming a one-to-one correspondence between the solutions of the Bethe equations and the eigenmodes of the Markov matrix, we derive combinatorial formulae for the orders of degeneracy and the number of multiplets. These results are confirmed by exact diagonalisations of small size systems. This unexpected structure of the TASEP spectrum suggests the existence of an underlying large invariance group.


ASEP Markov matrix Bethe Ansatz symmetries 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, E.,  et al. 1999LAPACK Users’ GuideSIAMPhiladelphiaGoogle Scholar
  2. 2.
    Derrida, B. 1998An exactly soluble non-equilibrium system: the asymmetric simple exclusion processPhys. Rep30165CrossRefMathSciNetGoogle Scholar
  3. 3.
    Derrida, B., Evans, M.R., Hakim, V., Pasquier, V. 1993Exact solution of a 1D asymmetric exclusion model using a matrix formulationJ. Phys. A: Math. Gen.261493ADSMathSciNetGoogle Scholar
  4. 4.
    Derrida, B., Lebowitz, J.L. 1998Exact large deviation function in the asymmetric exclusion processPhys. Rev. Lett80209CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Derrida, B., Lebowitz, J.L., Speer, E.R. 2003Exact large deviation functional of a stationary open driven diffusive system: the asymmetric exclusion processJ. Stat. Phys.110775CrossRefMathSciNetGoogle Scholar
  6. 6.
    Dhar, D. 1987An exactly solved model for interfacial growthPhase Trans951Google Scholar
  7. 7.
    Evans, M.R., Kafri, Y., Koduvely, H.M., Mukamel, D. 1998Phase separation in one-dimensional driven diffusive systemsPhys. Rev. Lett.80425CrossRefADSGoogle Scholar
  8. 8.
    Gaudin, M. 1983La Fonction d’Onde de BetheMassonParisGoogle Scholar
  9. 9.
    Gaudin M., Pasquier V. (private communication, 2004)Google Scholar
  10. 10.
    Golinelli O., Mallick K. Hidden symmetries in the asymmetric exclusion process, JSTAT P12001 (cond-mat/0412353, 2004)Google Scholar
  11. 11.
    Gwa, L.-H., Spohn, H. 1992Bethe solution for the dynamical-scaling exponent of the noisy Burgers equationPhys. Rev. A46844CrossRefADSGoogle Scholar
  12. 12.
    Kim, D. 1995Bethe Ansatz solution for crossover scaling functions of the asymmetric XXZ chain and the Kardar–Parisi–Zhang-type growth modelPhys. Rev. E523512ADSGoogle Scholar
  13. 13.
    Priezzhev, V.B. 2003Exact nonstationary probabilities in the asymmetric exclusion process on a ringPhys. Rev. Lett.91050601CrossRefADSGoogle Scholar
  14. 14.
    Schütz, G.M. 1997Exact solution of the master equation for the asymmetric exclusion processJ. Stat. Phys.88427MATHGoogle Scholar
  15. 15.
    Schütz, G.M. 2001Phase Transitions and Critical Phenomena Vol. 19AcademicLondonGoogle Scholar
  16. 16.
    Speer, E.R.,  et al. 1993The two species totally asymmetric simple exclusion processFannes, M. eds. Micro, Meso and Macroscopic approaches in PhysicsNato workshopLeuvenGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • O. Golinelli
    • 1
  • K. Mallick
    • 1
  1. 1.Service de Physique ThéoriqueCea SaclayFrance

Personalised recommendations