Journal of Statistical Physics

, Volume 121, Issue 1–2, pp 223–237 | Cite as

Lattice Boltzmann Simulation of Shear-Thinning Fluids

  • Dirk Kehrwald


It is shown how shear-thinning flow can be simulated without the need for numerical differentiation by following a lattice Boltzmann approach. The basic idea of is to combine the Cross model of viscosity with a 3D multiple relaxation time lattice Boltzmann method and to extract the required velocity derivatives from intrinsic quantities of the lattice Boltzmann scheme. Computational results are presented for a simple benchmark and for the simulation of liquid composite moulding.


Lattice Boltzmann methods shear-thinning fluids liquid composite moulding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aharonov, E., Rothman, D.H. 1993Non-Newtonian flow (through porous media): A lattice Boltzmann methodGeophys. Res Lett.20679682ADSGoogle Scholar
  2. Buick, J.M., Greated, C.A. 2000Gravity in a lattice Boltzmann modelPhys. Rev. E6153075320CrossRefADSGoogle Scholar
  3. Cross, M.M. 1965Rheology of non-Newtonian fluids: A new flow equation for pseudo-plastic systemsJ. Colloid Sci.20417437CrossRefGoogle Scholar
  4. Darcy, H.P. 1856Les fontaines publiques de la ville de DijonDalmontParisGoogle Scholar
  5. Frisch, U., d’Humières, D., Hasslacher, B., Lallemand, P., Pomeau, Y., Rivet, J.-P. 1987Lattice gas hydrodynamics in two and three dimensionsComplex Systems1649707MathSciNetMATHGoogle Scholar
  6. Ginzbourg, I., Adler, P.M. 1994Boundary flow condition analysis for the three-dimensional lattice Boltzmann modelJ. Phys. II France4191214CrossRefGoogle Scholar
  7. Ginzburg, I., Steiner, K. 2002A free-surface lattice Boltzmann method for modelling the filling of expanding cavities by Bingham fluids., PhilTrans. R. Soc. Lond. A360453466ADSMATHGoogle Scholar
  8. Ginzburg, I., Steiner, K. 2003Lattice Boltzmann model for free-surface flow and its application to filling process in castingJ. Comput. Phys.1856199CrossRefADSMathSciNetMATHGoogle Scholar
  9. Giraud, L., d’Humières, D., Lallemand, P. 1997A lattice Boltzmann model for visco-elasticityInt. J. Mod. Phys. C8805815ADSGoogle Scholar
  10. Giraud, L., d’Humières, D., Lallemand, P. 1998A lattice Boltzmann model for Jeffrey’s visco-elastic fluidEurophys. Lett.42625630CrossRefADSGoogle Scholar
  11. He, X., Luo, L.-S. 1997Lattice Boltzmann model for the incompressible Navier–Stokes equationJ. Stat. Phys.88927944CrossRefMathSciNetMATHADSGoogle Scholar
  12. D. d’Humières, Generalized lattice Boltzmann equations, in Rarefied Gas Dynamics: Theory and Simulations (Progress in Astronautics and Aeronautics 159 (1992), AIAA, Washington DC.), pp. 450–458Google Scholar
  13. d’Humières, D., Lallemand, P. 1993Gaz sur réseau pour la représentation des ondes transversesC. R. Acad. Sci. Paris II3179971001Google Scholar
  14. Junk, M. 2001A finite difference interpretation of the lattice Boltzmann methodNumer. Methods Partial Differ. Equations17383402MATHMathSciNetCrossRefGoogle Scholar
  15. Junk, M., Yang, Z. 2003Analysis of lattice Boltzmann boundary conditionsPAMM37679DOI 10.1002/pamm.200310320CrossRefGoogle Scholar
  16. Kehrwald D., Parallel lattice Boltzmann simulation of complex flows, in Proceedings of the NAFEMS Seminar “Simulation of Complex Flows (CFD) – Applications and Trends” (Niedernhausen bei Wiesbaden, Germany, 3–4 May 2004)Google Scholar
  17. Lallemand, P., d’Humières, D., Luo, L.-S., Rubinstein, R. 2003Theory of the lattice Boltzmann equation: Three-dimensional model for linear visco-elastic fluidsPhys. Rev. E67021203DOI: 10.1103/PhysRevE.67.021023CrossRefADSMathSciNetGoogle Scholar
  18. Owens, R.G., Phillips, T.N. 2002Computational RheologyImperial College PressLondonMATHGoogle Scholar
  19. Repsch M., Huber U., Maier M., Rief S., Kehrwald D., and Steiner K., Process simulation of LPM (Liquid Polymer Moulding) in special consideration of fluid velocity and viscosity characteristics, accepted for publication in the Proceedings of FPCM-7 (Newark, DE, 7–9 July 2004)Google Scholar
  20. Repsch M., Huber U., Rief S., Kehrwald D., and Steiner K., New perceptions regarding the influence of RTM-process parameters on the microstructure of a non-crimp fibre fabric bed, submitted to Composites Part AGoogle Scholar
  21. Rothman, D.H., Zaleski, S. 1997Lattice-Gas Cellular AutomataCambridge University PressCambridgeMATHGoogle Scholar
  22. Succi, S. 2001The Lattice Boltzmann Equation for Fluid Dynamics and BeyondClarendon PressOxfordMATHGoogle Scholar
  23. Wolf-Gladrow, D. 2000Lattice-Gas Cellular Automata and Lattice Boltzmann ModelsSpringerBerlinMATHGoogle Scholar
  24. Yasuda, K., Armstrong, R.C., Cohen, R.E. 1981Shear flow properties of concentrated solutions of linear and star branched polysteronesRheol. Acta.20163178CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Fraunhofer-Institut für Techno- und WirtschaftsmathematikKaiserslauternGermany

Personalised recommendations