Skip to main content
Log in

Large Deviations for a Stochastic Model of Heat Flow

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We investigate a one-dimensional chain of 2N harmonic oscillators in which neighboring sites have their energies redistributed randomly. The sites −N and N are in contact with thermal reservoirs at different temperature τ and τ+. Kipnis et al. (J. Statist. Phys., 27:65–74 (1982).) proved that this model satisfies Fourier’s law and that in the hydrodynamical scaling limit, when N → ∞, the stationary state has a linear energy density profile \(\bar \theta(u)\), u ∈[−1,1]. We derive the large deviation function S(θ(u)) for the probability of finding, in the stationary state, a profile θ(u) different from \(\bar \theta(u)\). The function S(θ) has striking similarities to, but also large differences from, the corresponding one of the symmetric exclusion process. Like the latter it is nonlocal and satisfies a variational equation. Unlike the latter it is not convex and the Gaussian normal fluctuations are enhanced rather than suppressed compared to the local equilibrium state. We also briefly discuss more general models and find the features common in these two and other models whose S(θ) is known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Basile G. Jona-Lasinio (2004) ArticleTitleEquilibrium states with macroscopic correlations Inter. J. Mod. Phys. B 18 479–485 Occurrence Handle2004IJMPB..18..479B Occurrence Handle2069473

    ADS  MathSciNet  Google Scholar 

  2. Bernardin C., Hydrodynamic limit for a heat conduction model, Preprint 2004.

  3. Bernardin C., and Olla S., In preparation.

  4. L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C. Landim, Fluctuations in stationary nonequilibrium states of irreversible processes, Phys. Rev. Lett. 87:040601 (2001).

    Google Scholar 

  5. L. Bertini A. Sole ParticleDe D. Gabrielli G. Jona-Lasinio C. Landim (2002) ArticleTitleMacroscopic fluctuation theory for stationary non equilibrium state J. Statist. Phys. 107 635–675 Occurrence Handle10.1023/A:1014525911391 Occurrence Handle2003k:82055

    Article  MathSciNet  Google Scholar 

  6. L. Bertini A. Sole ParticleDe D. Gabrielli G. Jona-Lasinio C. Landim (2003) ArticleTitleLarge deviations for the boundary driven simple exclusion process Math. Phys. Anal. Geom. 6 231–267 Occurrence Handle10.1023/A:1024967818899 Occurrence Handle2004j:82034

    Article  MathSciNet  Google Scholar 

  7. T. Bodineau G. Giacomin (2004) ArticleTitleFrom dynamic to static large deviations in boundary driven exclusion particles systems Stochastic Process. Appl. 110 67–81 Occurrence Handle10.1016/j.spa.2003.10.005 Occurrence Handle2005b:60252

    Article  MathSciNet  Google Scholar 

  8. A. Masi ParticleDe P. Ferrari (1984) ArticleTitleA remark on the hydrodynamics of the zero–range processes J. Statist. Phys. 36 81–87 Occurrence Handle10.1007/BF01015727 Occurrence Handle85i:82006

    Article  MathSciNet  Google Scholar 

  9. A. Masi ParticleDe P. Ferrari N. Ianiro E. Presutti (1982) ArticleTitleSmall deviations from local equilibrium for a process which exhibits hydrodynamical behavior II. J. Statist. Phys. 29 81–93

    Google Scholar 

  10. B. Derrida J.L. Lebowitz E.R. Speer (2001) ArticleTitleFree energy functional for nonequilibrium systems: an exactly solvable case Phys. Rev. Lett. 87 150601 Occurrence Handle10.1103/PhysRevLett.87.150601 Occurrence Handle2001PhRvL..87o0601D Occurrence Handle2002g:82036

    Article  ADS  MathSciNet  Google Scholar 

  11. B. Derrida J.L. Lebowitz E.R. Speer (2002) ArticleTitleLarge deviation of the density profile in the steady state of the open symmetric simple exclusion process J. Statist. Phys. 107 599–634 Occurrence Handle10.1023/A:1014555927320 Occurrence Handle2003b:82042

    Article  MathSciNet  Google Scholar 

  12. B. Derrida J.L. Lebowitz E.R. Speer (2003) ArticleTitleExact large deviation functional of a stationary open driven diffusive system: the asymmetric exclusion process J. Statist. Phys. 110 775–810 Occurrence Handle10.1023/A:1022111919402 Occurrence Handle2004b:82034

    Article  MathSciNet  Google Scholar 

  13. M.D. Donsker S.R.S. Varadhan (1989) ArticleTitleLarge deviations from a hydrodynamic scaling limit Comm. Pure Appl. Math. 42 243–270 Occurrence Handle90i:60077

    MathSciNet  Google Scholar 

  14. G. Eyink J.L. Lebowitz H. Spohn (1990) ArticleTitleHydrodynamics of stationary nonequilibrium states for some lattice gas models Comm. Math. Phys. 132 253–283 Occurrence Handle10.1007/BF02278011 Occurrence Handle91f:82046

    Article  MathSciNet  Google Scholar 

  15. G. Eyink J.L. Lebowitz H. Spohn (1991) ArticleTitleLattice gas models in contact with stochastic reservoirs: local equilibrium and relaxation to the steady state Comm. Math. Phys. 140 119–131 Occurrence Handle10.1007/BF02099293 Occurrence Handle93b:82013

    Article  MathSciNet  Google Scholar 

  16. Fritz J., Nagy K., and Olla S., Equilibrium fluctuations for a system of harmonic oscillators in thermal noise, Preprint 2004.

  17. M.Z. Guo G.C. Papanicolaou S.R.S. Varadhan (1998) ArticleTitleNonlinear diffusion limit for a system with nearest neighbor interactions Comm. Math. Phys. 118 31–59 Occurrence Handle89m:60255

    MathSciNet  Google Scholar 

  18. C. Kipnis C. Landim (1999) Scaling Limits of Interacting Particle Systems Springer Berlin

    Google Scholar 

  19. C. Kipnis C. Marchioro E. Presutti (1982) ArticleTitleHeat flow in an exactly solvable model J. Statist. Phys. 27 65–74 Occurrence Handle10.1007/BF01011740 Occurrence Handle83f:82056

    Article  MathSciNet  Google Scholar 

  20. C. Kipnis S. Olla S.R.S. Varadhan (1989) ArticleTitleHydrodynamics and large deviations for simple exclusion processes Commun. Pure Appl. Math. 42 115–137 Occurrence Handle91h:60115

    MathSciNet  Google Scholar 

  21. C. Landim M. Mourragui S. Sellami (2002) ArticleTitleHydrodynamic limit for a nongradient interacting particle system with stochastic reservoirs Theory Probab. Appl. 45 604–623 Occurrence Handle2003m:60281

    MathSciNet  Google Scholar 

  22. J.L. Lebowitz H. Spohn (1977) ArticleTitleStationary non-equilibrium states of infinite harmonic systems Commun. Math. Phys. 54 97–120 Occurrence Handle58 #25716

    MathSciNet  Google Scholar 

  23. S. Lu (1995) ArticleTitleHydrodynamic scaling limits with deterministic initial configurations Ann. Probab. 23 1831–1852 Occurrence Handle0860.60086 Occurrence Handle96k:60258

    MATH  MathSciNet  Google Scholar 

  24. J. Quastel F. Rezakhanlou S.R.S. Varadhan (1999) ArticleTitleLarge deviations for the symmetric simple exclusion process in dimensions d≥ 3, Probab Theory Related Fields 113 1–84 Occurrence Handle2000c:60162

    MathSciNet  Google Scholar 

  25. Z. Rieder J.L. Lebowitz E. Lieb (1967) ArticleTitleProperties of a harmonic crystal in a stationary non-equilibrium state J. Math. Phys. 8 1073 Occurrence Handle10.1063/1.1705319

    Article  Google Scholar 

  26. H. Spohn (1983) ArticleTitleLong range correlations for stochastic lattice gases in a nonequilibrium steady state J. Phys. A 16 4275–4291 Occurrence Handle10.1088/0305-4470/16/18/029 Occurrence Handle1983JPhA...16.4275S Occurrence Handle86c:82009

    Article  ADS  MathSciNet  Google Scholar 

  27. H. Spohn (1991) Large Scale Dynamics of Interacting Particles Spinger Berlin

    Google Scholar 

  28. S.R.S. Varadhan H.-T. Yau (1997) ArticleTitleDiffusive limit of lattice gas with mixing conditions Asian J. Math. 1 623–678 Occurrence Handle99k:60256

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Gabrielli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertini, L., Gabrielli, D. & Lebowitz, J.L. Large Deviations for a Stochastic Model of Heat Flow. J Stat Phys 121, 843–885 (2005). https://doi.org/10.1007/s10955-005-5527-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-5527-2

Keywords

Navigation