Advertisement

Journal of Statistical Physics

, Volume 119, Issue 3–4, pp 597–642 | Cite as

On the Statistical Mechanics and Surface Tensions of Binary Mixtures

  • J. De. Coninck
  • S. Miracle–Solé
  • J. Ruiz
Article

Abstract

Within a lattice model describing a binary mixture with fixed concentrations of the species we discuss the relationship between the surface tension of the mixture and the concentrations.

Keywords

Surface tensions binary mixtures interfaces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guggenheim, E.A. 1945TransFaraday Soc.41150CrossRefGoogle Scholar
  2. Defay, R., Prigogine, I. 1950TransFaraday Soc.46199CrossRefGoogle Scholar
  3. Eberhart, J.G. 1966J Phys Chem.701183Google Scholar
  4. Szyszkowsky, B. 1908J Phys Chem.64385Google Scholar
  5. Meissner, H.P., Michaels, A.S. 1949Ind Eng Chem.422782CrossRefGoogle Scholar
  6. Adamson, A.W. 1997Physical Chemistry of SurfacesWileyNew–YorkGoogle Scholar
  7. Defay, R., Prigogine, I., Bellmans, A., Everett, D.H. 1966Surface Tensions and Absorption LongmansGreen and Co.LondonGoogle Scholar
  8. J. De Coninck and J. Ruiz, Preprint (2003).Google Scholar
  9. Wheeler, J.C., Widom, B. 1970J. Chem Phys.525334CrossRefGoogle Scholar
  10. Lebowitz, J.L., Gallavotti, G. 1971J Math Phys.121129CrossRefGoogle Scholar
  11. Gallavotti, G. 1972Commun Math. Phys.27103CrossRefGoogle Scholar
  12. Dobrushin, R.L. 1972Theory Prob Appl.17582CrossRefGoogle Scholar
  13. Blume, M., Emery, V., Griffiths, R.B. 1971Phys Rev A41071CrossRefGoogle Scholar
  14. Ruelle, D. 1969Statistical Mechanics: Rigorous ResultsBenjaminNew–York AmsterdamGoogle Scholar
  15. Ruelle, D. 1978Thermodynamic FormalismAddison-WesleyReadingGoogle Scholar
  16. Ya., , Sinai, G. 1982Theory of Phase Transitions: Rigorous ResultsPergamon PressLondonGoogle Scholar
  17. Zahradnik, M. 1984Commun Math Phys.93359Google Scholar
  18. A. Martin Löf, G. Gallavotti, and S. Miracle–Sole, in Statistical Mechanics and Mathematical Problems, Lecture Notes in Physics (Springer, Berlin, 1973) vol. 20, p. 162.Google Scholar
  19. Miracle-Solé, S. 2000Physica A279244Google Scholar
  20. Kotecky, R., Preiss, D. 1986Commun Math. Phys.103491CrossRefGoogle Scholar
  21. Bricmont, J., Lebowitz, J.L., Pfister, C.–E. 1980Ann N Y Acad Sci.337214Google Scholar
  22. Bricmont, J., Lebowitz, J.L., Pfister, C.–E. 1979Commun Math. Phys.66267CrossRefGoogle Scholar
  23. Miracle-Solé, S. 1995J Stat Phys.79183Google Scholar
  24. D. B. Abraham, in Phase Transitions and Critical Phenomena, Vol. 10, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1986)Google Scholar
  25. C.–E. Pfister, in Scaling and Self–similarity in Physics, J. Fröhlich, ed. (Birkauser, 1982).Google Scholar
  26. Temperley, H.N.V. 1949Proc roy Soc A1993Google Scholar
  27. Work in progress.Google Scholar
  28. Borgs, C., Imbrie, J. 1989Commun Math Phys.123305CrossRefGoogle Scholar
  29. Dobrovolny, C., Laanait, L., Ruiz, J. 2004J Stat Phys.1141269CrossRefGoogle Scholar
  30. Bricmont, J., Fröhlich, J. 1985CommunMath. Phys.98553CrossRefGoogle Scholar
  31. Dobrushin, R.L., Kotecky, R., Shlosman, S.B. 1992Wulff Construction: A Global Shape from Local InteractionsProvidenceNew–YorkGoogle Scholar
  32. De Coninck, J., Kotecky, R., Laanait, L., Ruiz, J. 1992Physica A189616Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Centre de Recherche en Modélisation MoléculaireUniversité de Mons–HainautMonsBelgium
  2. 2.Centre de Physique ThéoriqueCNRSMarseille Cedex 9France

Personalised recommendations