Advertisement

Journal of Statistical Physics

, Volume 118, Issue 1–2, pp 265–300 | Cite as

Existence and Uniqueness of Solutions for the Couette Problem

  • S. Ghomeshi
Article

Abstract

We study existence and uniqueness results for the one-dimensional Boltzmann equation with inflow and diffusive boundary conditions. Our focus, partly encompasses some of the properties of the Boltzmann collision gain term which play a significant role in existence and uniqueness results. A series of estimates are proven on the collision term which is shown to produce a suitable function space in which the contraction mapping arguments are available.

Keywords

Existence uniqueness collision term estimates contraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arkeryd, L., Cercignani, C., Illner, R. 1991Measure solutions of the steady Boltzmann equation in a slabCommun. Math. Phys.142285296Google Scholar
  2. Arkeryd, L., Nouri, A.. 1995A compactness result related to the stationary Boltzmann equation in a slab, with applications to the existence theoryInd. Univ. Math. J.44815839Google Scholar
  3. Arkeryd, L., Nouri, A. 1999On the stationary povzner equation in three space variablesJ. Math. Kyoto Univ.39115153Google Scholar
  4. ArkerydL. Nouri, A. 2000L1 Solutions to the stationary Boltzmann equation in a slabAnn. Fac. Sci. Toulouse Math.9375413Google Scholar
  5. Arkeryd, L., Nouri, A. 2002The stationary Boltzmann equation in \(\Bbb{R}^{n}\) with given indata, AnnScuola Norm. Sup. Pisa.31128Google Scholar
  6. L. Arkeryd and A. Nouri, On stationary kinetic systems of boltzmann type and their fluid limits, Preprint (Department of Mathematics, Chalmers University of Technology, 2003)Google Scholar
  7. L. Arkeryd and A. Nouri, The stationary Nonlinear Boltzmann Equation in a Couette setting; Isolated Solutions and Non-Uniqueness, Preprint (Department of Mathematics, Chalmers University of Technology, 2003)Google Scholar
  8. L. Arkeryd and A. Nouri, The Stationary Nonlinear Boltzmann Equation in a Couette Setting; Lq-Solutions and Positivity, Preprint (Department of Mathematics, Chalmers University of Technology, 2003)Google Scholar
  9. L, Arkeryd and A. Nouri, A Large Data Existence Results for the Stationary Boltzmann Equation in a Cylindrical Geometry, Preprint (Department of Mathematics, Chalmers University of Technology, 2003)Google Scholar
  10. Carleman, T. 1957Theorie Cinetique Des GazAlmqvist & WiksellUppsalaGoogle Scholar
  11. Cercignani, C., Illner, R., Pulvirenti, M. 1984Applied Mathematical Sciences. The Mathematical Theory of Dilute GasesSpringerNew YorkVol. 106Google Scholar
  12. Cercignani, C. 1987Applied Mathematical Sciences. The Boltzmann Equation and Its ApplicationsSpringerNew YorkVol. 67Google Scholar
  13. S. Ghomeshi, Masters Thesis: The Existence and Uniqueness of Solutions to the Steady Boltzmann Equation (University of Victoria, 1998)Google Scholar
  14. Grad, H. 1963Asymptotic theory of the Boltzmann equationLaurman, J.A. eds. Rarefied Gas DynamicsAcademic PressNew YorkGoogle Scholar
  15. R. Illner and Struckmeier Boundary value problems for the steady Boltzmann equation. J. Stat. Phys. 85:427–445Google Scholar
  16. Maslova, N. B. 1993Series on Advances in Mathematics for Applied Sciences. Nonlinear Evolution EquationsWorld ScientificSingaporeVol. 10Google Scholar
  17. Smart, D.R. 1974Fixed Point TheoremsCambridge University PressNew YorkGoogle Scholar
  18. Wennberg, B. 1994Regularity in the Boltzmann equation and the radon transformCommun. Partial Diff. Equ.1920572074Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial EngineeringConcordia UniversityWest MontrealCanada

Personalised recommendations