NMR Parameters of Imidazolium Ionic Liquids as Indicators of Their State and Properties in Aqueous Solutions


Seven 1-methylimidazolium-based ionic liquids (ILs) and their aqueous solutions were systematically investigated in order to explore how the NMR spectroscopic properties (chemical shifts, spin–spin coupling constants) are connected or correlated with several physical and chemical properties (density, viscosity, water content, etc.) of ILs and their aqueous mixtures. 1H and 13C NMR chemical shifts of ILs vary markedly depending on different anions, alkyl chain length, and water content. Addition of water affected the NMR parameters in various manners, altering several of them significantly, while others did not change distinctly. Dissimilar behavior of NMR parameters in various solvents at various concentrations allows one to conclude that they reflect several contributions from different properties of ILs and can be used for deep structural investigations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Kirchner, B., (ed.).: Ionic Liquids. Topics Current Chemistry, vol. 290, Springer (2009). https://doi.org/10.1007/978-3-642-01780-3

  2. 2.

    Olivier-Bourbigou, H., Magna, L., Morvan, D.: Ionic liquids and catalysis: recent progress from knowledge to applications. Appl. Catal. A 373(1–2), 1–56 (2010). https://doi.org/10.1016/j.apcata.2009.10.008

    CAS  Article  Google Scholar 

  3. 3.

    Azov, V.A., Egorova, K.S., Seitkalieva, M.M., Kashin, A.S., Ananikov, V.P.: “Solvent-in-salt” systems for design of new materials in chemistry, biology and energy research. Chem. Soc. Rev. 47(4), 1250–1284 (2018). https://doi.org/10.1039/c7cs00547d

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Alexander, K.: Ionic Liquids: Applications and Perspectives, p. 686. Rijeka, TechOpen (2011)

    Google Scholar 

  5. 5.

    Stark, A., Brehm, M., Brüssel, M., Lehmann, S.B.C., Pensado, A.S., Schöppke, M., Kirchner, B.: A theoretical and experimental chemist’s joint view on hydrogen bonding in ionic liquids and their binary mixtures. Top. Curr. Chem. 351, 149–187 (2014). https://doi.org/10.1007/128_2013_485

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Hayes, R., Warr, G.G., Atkin, R.: Structure and nanostructure in ionic liquids. Chem. Rev. 115(13), 6357–6426 (2015). https://doi.org/10.1021/cr500411q

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Mihkel, K.: Analytical Applications of Ionic Liquids, p. 436. World Scientific, New Jersey (2017). https://doi.org/10.1142/9781786340726_fmatter

    Google Scholar 

  8. 8.

    Dong, K., Liu, X., Dong, H., Zhang, X., Zhang, S.: Multiscale studies on ionic liquids. Chem. Rev. 117(10), 6633–6635 (2017). https://doi.org/10.1021/acs.chemrev.6b00776

    CAS  Article  Google Scholar 

  9. 9.

    Moreno, M., Castiglione, F., Mele, A., Pasqui, C., Raos, G.: Interaction of water with the model ionic liquid [bmim][BF4]: molecular dynamics simulations and comparison with NMR data. J. Phys. Chem. B 112(26), 7826–7836 (2008). https://doi.org/10.1021/jp800383g

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Ananikov, V.P.: Characterization of molecular systems and monitoring of chemical reactions in ionic liquids by NMR spectroscopy. Chem. Rev. 111(2), 418–454 (2011). https://doi.org/10.1021/cr9000644

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Rollet, A.-L., Bessada, C.: NMR studies of molten salt and room temperature ionic liquids. Annu. Rep. NMR Spectrosc. 78, 149–207 (2013). https://doi.org/10.1016/B978-0-12-404716-7.00004-3

    CAS  Article  Google Scholar 

  12. 12.

    Damodaran, K.: Recent NMR studies of ionic liquids. Annu. Rep. NMR Spectrosc. 88, 216–244 (2016). https://doi.org/10.1016/bs.arnmr.2015.11.002

    CAS  Article  Google Scholar 

  13. 13.

    Damodaran, K.: Special issue: NMR of ionic liquids. Magn. Reson. Chem. 56(2), 55–146 (2018). doi: https://doi.org/10.1002/mrc.4647

  14. 14.

    Giernoth, R., Bankmann, D., Schlörer, N.: High performance NMR in ionic liquids. Green Chem. 7(5), 279–282 (2005). https://doi.org/10.1039/B417783E

    CAS  Article  Google Scholar 

  15. 15.

    Weingartner, H.: NMR studies of ionic liquids: structure and dynamics. Curr. Opin. Coll. Interf. Sci. 18(3), 183–189 (2013). https://doi.org/10.1016/j.cocis.2013.04.001

    CAS  Article  Google Scholar 

  16. 16.

    Butler, B.J., Thomas, D.S., Harper, J.B.: NMR spectroscopy to follow reaction progress in ionic liquids. Magn. Reson. Chem. 54(6), 423–428 (2014). https://doi.org/10.1002/mrc.4161

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Reid, J.E.S.J., Walker, A.J., Shimizu, S.: Residual water in ionic liquids: clustered or dissociated? Phys. Chem. Chem. Phys. 17(22), 14710–14718 (2015). https://doi.org/10.1039/c5cp01854d

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Marekha, B.A., Kalugin, O.N., Bria, M., Idrissi, A.: Probing structural patterns of ion association and solvation in mixtures of imidazolium ionic liquids with acetonitrile by means of relative 1H and 13C NMR chemical shifts. Phys. Chem. Chem. Phys. 17(35), 23183–23194 (2015). https://doi.org/10.1039/C5CP02748A

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Lopes, M.M., Barrulas, R.V., Paiva, T.G., Ferreira, A.S.D., Zanatta, M., Corvo, M.C.: Molecular interactions in ionic liquids: the NMR contribution towards tailored solvents [Online First]. IntechOpen (2019). https://doi.org/10.5772/intechopen.89182

    Article  Google Scholar 

  20. 20.

    Cabeza, O., García-Garabal, S., Segade, L., Domínguez-Pérez, M., Rilo, E., Varela, L.M.: Physical properties of binary mixtures of ILs with water and ethanol. A review. In: Kokorin, A. (ed.) Ionic Liquids: Theory, Properties, New Approaches, pp. 111–136. IntechOpen, London (2011). https://doi.org/10.5772/14848

    Google Scholar 

  21. 21.

    Jiang, S., Hu, Y., Wang, Y., Wang, X.: Viscosity of typical room-temperature ionic liquids: a critical review. J. Phys. Chem. Ref. Data 48, 033101 (2019). https://doi.org/10.1063/1.5090486

    CAS  Article  Google Scholar 

  22. 22.

    Earle, M.J., Engel, B.S., Seddon, K.R.: Keto-enol tautomerism as a polarity indicator in ionic liquids. Aust. J. Chem. 57(2), 149–150 (2004). https://doi.org/10.1071/CH03259

    CAS  Article  Google Scholar 

  23. 23.

    Wang, J., Liu, Y., Li, W., Gao, G.: Prediction of 1H nmr chemical shifts for ionic liquids: strategy and application of a relative reference standard. RSC Adv. 8(50), 28604–28612 (2018). https://doi.org/10.1039/c8ra04822c

    CAS  Article  Google Scholar 

  24. 24.

    Gillespie, R.J., Hartman, J.S., Parekh, M.: Solvent effects on the boron–fluorine coupling constant and on fluorine exchange in the tetrafluoroborate anion. Can. J. Chem. 46(10), 1601–1610 (1968). https://doi.org/10.1139/v68-268

    CAS  Article  Google Scholar 

  25. 25.

    Freire, M.G., Neves, C.M.S.S., Marrucho, I.M., Coutinho, J.A.P., Fernandes, A.M.: Hydrolysis of tetrafluoroborate and hexafluorophosphate counter ions in imidazolium-based ionic liquids. J. Phys. Chem. A 114(11), 3744–3749 (2010). https://doi.org/10.1021/jp903292n

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Saihara, K., Shimizu, A., Abe, H., Yoshimura, Y.: Hydrolysis of the room temperature ionic liquid, N, N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium tetrafluoroborate. J. Jpn. Inst. Energy 93(4), 328–332 (2014). https://doi.org/10.3775/jie.93.328

    CAS  Article  Google Scholar 

  27. 27.

    Wang, B., Qin, L., Mu, T., Xue, Z., Gao, G.: Are ionic liquids chemically stable? Chem. Rev. 117(10), 7113–7131 (2017). https://doi.org/10.1021/acs.chemrev.6b00594

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Hesse-Ertelt, S., Heinze, T., Kosan, B., Schwikal, K., Meister, F.: Solvent effects on the NMR chemical shifts of imidazolium based ionic liquids and cellulose therein. Macromol. Symp. 294(2), 75–89 (2010). https://doi.org/10.1002/masy.201000009

    CAS  Article  Google Scholar 

  29. 29.

    Marekha, B.A., Bria, M., Moreau, M., De Waele, I., Miannay, F.-A., Smortsova, Y., Takamuku, T., Kalugin, O.N., Kiselev, M., Idrissi, A.: Intermolecular interactions in mixtures of 1-N-butyl-3-methylimidazolium acetate and water: insights from IR, Raman, NMR spectroscopy and quantum chemistry calculations. J. Mol. Liq. 10, 227–237 (2015). https://doi.org/10.1016/j.molliq.2015.05.015

    CAS  Article  Google Scholar 

  30. 30.

    Balevicius, V., Gdaniec, Z., Aidas, K., Tamuliene, J.: NMR and quantum chemistry study of mesoscopic effects in ionic liquids. J. Phys. Chem. A 114(16), 5365–5371 (2010). https://doi.org/10.1021/jp909293b

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Shahkhatuni, A.A., Shahkhatuni, A.G., Sahakyan, A.B., Panosyan, H.A., Byeon, I.-J.L., Gronenborn, A.M.: Assessment of solvent effects: do weakly aligned media affect the structure of the solute? Magn. Reson. Chem. 45(7), 557–563 (2007). https://doi.org/10.1002/mrc.2004

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Ries, L.A.S., do Amaral, F.A., Matos, K., Martini, E.M.A., de Souza, M.O., de Souza, R.F.: Evidence of change in the molecular organization of 1-N-butyl-3-methylimidazolium tetrafluoroborate ionic liquid solutions with the addition of water. Polyhedron 27(15), 3287–3293 (2008). https://doi.org/10.1016/j.poly.2008.07.029

    CAS  Article  Google Scholar 

  33. 33.

    Cascão, J., Silva, W., Ferreira, A.S.D., Cabrita, E.J.: Ion pair and solvation dynamics of [Bmim][BF4] + water system. Magn. Reson. Chem. 56(2), 127–139 (2018). https://doi.org/10.1002/mrc.4673

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Cha, S., Ao, M., Sung, W., Moon, B., Ahlstrom, B., Johansson, P., Ouchi, Y., Kim, D.: Structures of ionic liquid-water mixtures investigated by IR and NMR spectroscopy. Phys. Chem. Chem. Phys. 16(20), 9591–9601 (2014). https://doi.org/10.1039/c4cp00589a

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Ohta, S., Shimizu, A., Imai, Y., Abe, H., Hatano, N., Yoshimura, Y.: Peculiar concentration dependence of H/D exchange reaction in 1-butyl-3-methylimidazolium tetrafluoroborate–D2O mixtures. Open J. Phys. Chem. 01(03), 70–76 (2011). https://doi.org/10.4236/ojpc.2011.13010

    CAS  Article  Google Scholar 

  36. 36.

    Marks, C., Mitsos, A., Viell, J.: Change of C(2)-hydrogen-deuterium exchange in mixtures of EMIMAc. J. Solution Chem. 48(7), 1188–1205 (2019). https://doi.org/10.1007/s10953-019-00899-7

    CAS  Article  Google Scholar 

  37. 37.

    Shahkhatuni, A.A., Shahkhatuni, A.G., Minasyan, N.S., Panosyan, H.A., Sahakyan, A.B.: Revealing the specific solute–solvent interactions via the measurements of the NMR spin-spin coupling constants. J. Mol. Struct. 1083, 175–178 (2015). https://doi.org/10.1016/j.molstruc.2014.11.058

    CAS  Article  Google Scholar 

  38. 38.

    Kashin, A.S., Galkin, K.I., Khokhlova, E.A., Ananikov, V.P.: Direct observation of self-organized water-containing structures in the liquid phase and their influence on 5-(hydroxymethyl)furfural formation in ionic liquids. Angew. Chem. Int. Ed. 55(6), 2161–2166 (2016). https://doi.org/10.1002/anie.201510090

    CAS  Article  Google Scholar 

  39. 39.

    Seitkalieva, M.M., Grachev, A.A., Egorova, K.S., Ananikov, V.P.: Nanoscale organization of ionic liquids and their interaction with peptides probed by 13C NMR spectroscopy. Tetrahedron 70(36), 6075–6081 (2014). https://doi.org/10.1016/j.tet.2014.02.025

    CAS  Article  Google Scholar 

  40. 40.

    Liu, W., Zhao, T., Zhang, Y., Wang, H., Yu, M.: The physical properties of aqueous solutions of the ionic liquid [BMIM][BF4]. J. Solution Chem. 35(10), 1337–1346 (2006). https://doi.org/10.1007/s10953-006-9064-7

    CAS  Article  Google Scholar 

  41. 41.

    Rilo, E., Pico, J., Garcıa-Garabal, S., Varela, L.M., Cabeza, O.: Density and surface tension in binary mixtures of CnMIM–BF4 ionic liquids with water and ethanol. Fluid Phase Equilib. 285(1–2), 83–89 (2009). https://doi.org/10.1016/j.fluid.2009.07.010

    CAS  Article  Google Scholar 

  42. 42.

    Lal, B., Sahin, M., Ayranci, E.: Volumetric studies to examine the interactions of imidazolium based ionic liquids with water by means of density and speed of sound measurements. J. Chem. Thermodyn. 54, 142–147 (2012). https://doi.org/10.1016/j.jct.2012.03.025

    CAS  Article  Google Scholar 

  43. 43.

    Ge, M.-L., Zhao, R.-S., Yi, Y.-F., Zhang, Q., Wang, L.-S.: Densities and viscosities of 1-butyl-3-methylimidazolium trifluoromethanesulfonate + H2O binary mixtures at T = (303.15 to 343.15) K. J. Chem. Eng. Data 53(10), 2408–2411 (2008). https://doi.org/10.1021/je8003832

    CAS  Article  Google Scholar 

  44. 44.

    Zhu, A., Wang, J., Han, L., Fan, M.: Measurements and correlation of viscosities and conductivities for the mixtures of imidazolium ionic liquids with molecular solutes. Chem. Eng. J. 147(1), 27–35 (2009). https://doi.org/10.1016/j.cej.2008.11.013

    CAS  Article  Google Scholar 

  45. 45.

    Bou Malham, I., Turmine, M.: Viscosities and refractive indices of binary mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-2,3-dimethylimidazolium tetrafluoroborate with water at 298 K. J. Chem. Thermodyn. 40(4), 718–723 (2008). https://doi.org/10.1016/j.jct.2007.10.002

    CAS  Article  Google Scholar 

Download references


The research was done in frames of joint project funded by State Committee of Science of Armenia (18RF-135) and Russian Foundation for Basic Research (18-53-05014).

Author information



Corresponding author

Correspondence to A. A. Shahkhatuni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 2859 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shahkhatuni, A.A., Shahkhatuni, A.G., Mamyan, S.S. et al. NMR Parameters of Imidazolium Ionic Liquids as Indicators of Their State and Properties in Aqueous Solutions. J Solution Chem 50, 90–104 (2021). https://doi.org/10.1007/s10953-020-01044-5

Download citation


  • Ionic liquids
  • NMR spectroscopy
  • Chemical shifts
  • Spin–spin coupling constants
  • Aqueous mixtures