Spectral and Aggregative Properties of Acid Blue 113 in Aqueous and Aqueous Solutions of Urea and in Colloids of Silver Nanoparticles

Abstract

Photophysical and association properties of a diazo dye (acid blue 113) in the presence of a structure breaking additive (urea) and Ag nanoparticles (AgNPs) were investigated at different dye and additive concentrations (0–3 mol·L−1 urea and 0.1 mmol·L−1 AgNPs). The ionic dye, with strong hydrophilic character, has an aromatic diazo skeleton and two sulfide functional groups. The dye concentrations ranging from 1 × 10−6 to 5 × 10−4 mol·L−1 were chosen and studied, to avoid formation of the higher-order aggregates. The dye spectra were analyzed using linear and nonlinear decomposition algorithms. Using the least squares fitting approach, the dimerization constant Kd and individual monomer and dimer spectra were determined. A reduction of the dimerization constant for AB 113 in aqueous solutions containing additives was observed. The spectral parameters, structure of the dimeric species and the interaction energy between the monomers in the dye solution were estimated based on the molecular exciton theory.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Green, F.J.: The Sigma-Aldrich Handbook of Stains, Dyes and Indicators, 2nd edn. Aldrich Chemical Company Inc, Wisconsin (1991)

    Google Scholar 

  2. 2.

    Nachiyar, C.V., Sunkar, S., Kumar, G.N., Karunya, A., Ananth, P., Prakash, P., Jabasingh, S.A.: Biodegradation of acid blue 113 containing textile effluent by constructed aerobic bacterial consortia: optimization and mechanism. J. Bioremediat. Biodegrad. 3, 2–10 (2012)

    Article  Google Scholar 

  3. 3.

    Sekar, S., Mahadevan, S., Shanmugam, B.K., Mandal, A.B.: Bioenergetics and pathway of acid blue 113 degradation by Staphylococcus lentus. Biotechnol. Prog. 28, 1400–1408 (2012)

    CAS  Article  Google Scholar 

  4. 4.

    Chianca de Moura, D., Quiroz, M.A., Ribeiro da Silva, D., Salazar, R., Martínez-Huitle, C.A.: Electrochemical degradation of acid blue 113 dye usingTiO2-nanotubes decorated with PbO2 as anode. Environ. Nanotechnol. Monit. Manage. 5, 13–20 (2016)

    Article  Google Scholar 

  5. 5.

    Suganya Josephine, G.A., Mary Nisha, U., Meenakshi, G., Sivasamy, A.: Nanocrystalline semiconductor doped rare earth oxide for the photocatalytic degradation studies on acid blue 113: a di-azo compound under UV slurry photoreactor. Ecotox. Environ. Safe. 121, 67–72 (2015)

    CAS  Article  Google Scholar 

  6. 6.

    Shu, H.-Y., Chang, M.-C., Fan, H.-J.: Effects of gap size and UV dosage on decolorization of C.I. acid blue 113 wastewater in the UV/H2O2 process. J. Hazard. Mater. 118, 205–211 (2005)

    CAS  Article  Google Scholar 

  7. 7.

    Shokoofehpoor, F., Chaibakhsh, N., Ghanadzadeh Gilani, A.: Optimization of sono-Fenton degradation of acid blue 113 using iron vanadate nanoparticles. Sep. Sci. Technol. 54, 2943–2958 (2018)

    Article  Google Scholar 

  8. 8.

    Gupta, V.K., Gupta, B., Rastogi, A., Agarwal, S., Nayak, A.: A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye-acid blue 113. J. Hazard. Mater. 186, 891–901 (2011)

    CAS  Article  Google Scholar 

  9. 9.

    Lopez Arbeloa, F., Martınez Martınez, V., Arbeloa, T., Lopez Arbeloa, I.: Photoresponse and anisotropy of rhodamine dye intercalated in ordered clay layered films. J. Photochem. Photobiol. C 8, 85–108 (2007)

    CAS  Article  Google Scholar 

  10. 10.

    Herkstroeter, W.G., Martic, P.A., Farid, S.: Inclusion by cyclodextrins to control dye aggregation equilibria in aqueous solution. J. Am. Chem. Soc. 112, 3583–3589 (1990)

    CAS  Article  Google Scholar 

  11. 11.

    Ghanadzadeh, A., Zeini, A., Kashef, A., Moghadam, M.: Concentration effect on the absorption spectra of oxazine1 and methylene blue in aqueous and alcoholic solutions. J. Mol. Liq. 138, 100–106 (2008)

    CAS  Article  Google Scholar 

  12. 12.

    Chakraborty, A., Ali, M., Saha, S.K.: Molecular interaction of organic dyes in bulk and confined media. Spectrochim. Acta A 75, 1577–1583 (2010)

    Article  Google Scholar 

  13. 13.

    Bolotin, P.A., Baranovsky, S.F., Evstigneev, M.P.: Spectrophotometric investigation of the hetero-association of caffeine and thiazine dye in aqueous solution. Spectrochim. Acta A 64, 693–697 (2006)

    CAS  Article  Google Scholar 

  14. 14.

    Ghanadzadeh, A., Zanjanchi, M.A., Tibandpay, R.: The role of host environment on the aggregative properties of some ionic dye materials. J. Mol. Struct. 616, 167–174 (2002)

    CAS  Article  Google Scholar 

  15. 15.

    Frank, H.S., Franks, F.: Structural approach to the solvent power of water for hydrocarbons; urea as a structure breaker. J. Chem. Phys. 48, 4746–4757 (1968)

    CAS  Article  Google Scholar 

  16. 16.

    England, J.L., Haran, G.: Role of solvation effects in protein denaturation: from thermodynamics to single molecules and back. Annu. Rev. Phys. Chem. 62, 257–277 (2011)

    CAS  Article  Google Scholar 

  17. 17.

    Stumpe, M.C., Grubmüller, H.: Interaction of urea with amino acids: Implications for urea-induced protein denaturation. J. Am. Chem. Soc. 129, 16126–16131 (2007)

    CAS  Article  Google Scholar 

  18. 18.

    Ramondo, F., Bencivenni, L., Caminiti, R., Pieretti, A., Gontrani, L.: Dimerisation of urea in water solution: a quantum mechanical investigation. Phys. Chem. Chem. Phys. 9, 2206–2215 (2007)

    CAS  Article  Google Scholar 

  19. 19.

    Shankar, S.S., Ahmad, A., Sastry, M.: Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol. Prog. 19, 1627–1631 (2003)

    CAS  Article  Google Scholar 

  20. 20.

    Liu, T., Li, D., Yang, D., Jiang, M.: Fabrication of flower-like silver structures through anisotropic growth. Langmuir 27, 6211–6217 (2011)

    CAS  Article  Google Scholar 

  21. 21.

    Tang, B., Zhang, M., Hou, X., Li, J., Sun, L., Wang, X.: Coloration of cotton fibers with anisotropic silver nanoparticles. Ind. Eng. Chem. Res. 51, 12807–12813 (2012)

    CAS  Article  Google Scholar 

  22. 22.

    Farbod, M., Kajbafvala, M.: Effect of nanoparticle surface modification on the adsorption-enhancedphotocatalysis of Gd/TiO2 nanocomposite. Powder Technol. 239, 434–440 (2013)

    CAS  Article  Google Scholar 

  23. 23.

    Jiang, X., Zeng, Q., Yu, A.: Thiol-frozen shape evolution of triangular silver nanoplates. Langmuir 23, 2218–2223 (2007)

    CAS  Article  Google Scholar 

  24. 24.

    Ghanadzadeh Gilani, A., Poormohammadi-Ahandani, Z., Kian, R.: Additive-induced aggregate changes of two structurally similar dyes in aqueous solutions: a comparative photophysical study. Spectrochim. Acta A 189, 543–555 (2018)

    CAS  Article  Google Scholar 

  25. 25.

    Ghanadzadeh Gilani, A., Moghadam, M., Hosseini, S.E., Zakerhamidi, M.S.: A comparative study on the aggregate formation of two oxazine dyes in aqueous and aqueous urea solutions. Spectrochim. Acta A 83, 100–105 (2011)

    Article  Google Scholar 

  26. 26.

    Ghanadzadeh Gilani, A., Ghorbanpour, T., Salmanpour, M.: Additive effect on the dimer formation of thiazine dyes. J. Mol. Liq. 177, 273–282 (2013)

    CAS  Article  Google Scholar 

  27. 27.

    Ghanadzadeh Gilani, A., Shokri, S.: Spectral and aggregative properties of two oxazine dyes in aqueous solutions containing structure-breaking and multifunctional additives. J. Mol. Liq. 193, 194–203 (2014)

    Article  Google Scholar 

  28. 28.

    Ghanadzadeh Gilani, A., Dezhampanah, H., Poormohammadi-Ahandani, Z.: A comparative spectroscopic study of thiourea effect on the photophysical and molecular association behavior of various phenothiazine dyes. Spectrochim. Acta A 179, 132–143 (2017)

    CAS  Article  Google Scholar 

  29. 29.

    Jin, R.C., Cao, Y.W., Mirkin, C.A., Kelly, K.L., Schatz, G.C., Zheng, J.G.: Photoinduced conversion of silver nanospheres to nanoprisms. Science 294, 1901–1903 (2001)

    CAS  Article  Google Scholar 

  30. 30.

    Ghanadzadeh Gilani, A., Moghadam, M., Zakerhamidi, M.S.: Dimeric spectra analysis in Microsoft Excel: a comparative study. Comput. Methods Prog. Biomed. 104, 175–181 (2011)

    Article  Google Scholar 

  31. 31.

    Kasha, M., Rawls, H.R., El-Bayoumi, A.: The exciton model in molecular spectroscopy. Pure Appl. Chem. 11, 371–393 (1965)

    CAS  Article  Google Scholar 

  32. 32.

    Costantino, L., D'Errico, G., Ortona, O., Vitagliano, V.: Transport properties of urea and alkylureas aqueous solutions. A velocity correlation study. J. Mol. Liq. 84, 179–191 (2000)

    CAS  Article  Google Scholar 

  33. 33.

    Takahashi, T., Hoshino, H., Yotsuyanagi, T.: The use of water structure breakers, urea and guanidium chloride, new mobile phase modifiers in reversed-phase partition high-performance liquid chromatography. Anal. Sci. 17, 847–851 (2001)

    CAS  Article  Google Scholar 

  34. 34.

    Feng, Y., Yu, Z.-W., Quinn, P.J.: Effect of urea, dimethylurea, and tetramethylurea on the phase behavior of dioleoylphosphatidylethanolamine. Chem. Phys. Lipids. 114, 149–157 (2002)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Ghanadzadeh Gilani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shokoofehpoor, F., Ghanadzadeh Gilani, A., Chaibakhsh, N. et al. Spectral and Aggregative Properties of Acid Blue 113 in Aqueous and Aqueous Solutions of Urea and in Colloids of Silver Nanoparticles. J Solution Chem 49, 849–862 (2020). https://doi.org/10.1007/s10953-020-00995-z

Download citation

Keywords

  • Acid blue 113
  • Self-association
  • Additive effect
  • DECOM program
  • Exciton theory