Extraction of Some Actinide Ions from Nitric Acid Feeds Using N, N-di-n-hexyloctanamide (DHOA) in an Ionic Liquid

Abstract

Liquid–liquid extraction studies of \({\text{UO}}_{2}^{{2 + }} \), \( {\text{NpO}}_{2}^{{2 + }} \), Pu(IV), Np(IV), and Pu(III) were carried out from nitric acidic feeds using N,N-di-n-hexyloctanamide (DHOA) in 1-butyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide (C4mim·NTf2). The distribution studies indicated strikingly different trends in the extraction of tetra- and hexa-valent actinide ions with varying nitric acid concentration. While the distribution ratio values for \({\text{UO}}_{2}^{{2 + }} \) and \( {\text{NpO}}_{2}^{{2 + }} \) were found to decrease with increasing HNO3 concentration up to 1 mol·L−1 HNO3 and did not change thereafter, those obtained for Pu4+ and Np4+ showed monotonic increases over the entire range of acidity. On the other hand, Pu3+ was poorly extracted in the lower acidity range up to 4 mol·L−1, beyond which a sharp increase in the extraction was seen. The nature of the extracted species was obtained using several studies where the ligand and nitrate ion concentrations were varied while keeping the others constant using slope analysis.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Ansari, S.A., Mohapatra, P.K., Mazan, V., Billard, I.: Extraction of actinides by tertiary amines in room temperature ionic liquids: evidence for anion exchange as a major process at high acidity and impact of acid nature. RSC Adv. 5, 35821–35829 (2015)

    CAS  Article  Google Scholar 

  2. 2.

    Ansari, S.A., Mohapatra, P.K., Raut, D.R.: Extraction of Np4+ and NpO22+ from nitric acid medium using TODGA in room temperature ionic liquids. J. Solution Chem. 47, 1326–1338 (2018)

    CAS  Article  Google Scholar 

  3. 3.

    Billard, I., Ouadi, A., Gaillard, C.: Liquid–liquid extraction of actinides, lanthanides, and fission products by use of ionic liquids: from discovery to understanding. Anal. Bioanal. Chem. 400, 1555–1566 (2011)

    CAS  Article  Google Scholar 

  4. 4.

    Billard, I., Ouadi, A., Jobin, E., Champion, J., Gaillard, C., Georg, S.: Understanding the extraction mechanism in ionic liquids: \({\text{UO}}_{2}^{2 + }\)/HNO3/TBP/C4-mimTf2N as a case study. Solvent Ext. Ion Exchange 29, 577–601 (2011)

    CAS  Article  Google Scholar 

  5. 5.

    Binnemans, K.: Lanthanides and actinides in ionic liquids. Chem. Rev. 107, 2592–2614 (2007)

    CAS  Article  Google Scholar 

  6. 6.

    Brennecke, J.F., Maginn, E.J.: Ionic liquids: innovative fluids for chemical processing. AIChE J. 47, 2384–2389 (2001)

    CAS  Article  Google Scholar 

  7. 7.

    Cocalia, V.A., Gutowski, K.E., Rogers, R.D.: The coordination chemistry of actinides in ionic liquids: a review of experiment and simulation. Coord. Chem. Rev. 250, 755–764 (2006)

    CAS  Article  Google Scholar 

  8. 8.

    Gasparini, G.M., Grossi, G.: Application of N,N-dialkyl aliphatic amides in the separation of some actinides. Sep. Sci. Technol. 15, 825–844 (1980)

    CAS  Article  Google Scholar 

  9. 9.

    Giridhar, P., Venkatesan, K.A., Srinivasan, T.G., Vasudeva Rao, P.R.: Extraction of uranium(VI) from nitric acid medium by 1.1 M tri-n-butylphosphate in ionic liquid diluent. J. Radioanal. Nucl. Chem. 265, 31–38 (2005)

    CAS  Article  Google Scholar 

  10. 10.

    Kumari, N., Pathak, P.N., Prabhu, D.R., Manchanda, V.K.: Comparison of extraction behavior of neptunium from nitric acid medium employing tri-n-butyl phosphate and N,N-dihexyl octanamide as extractants. Sep. Sci. Technol. 47, 1492–1497 (2012)

    CAS  Article  Google Scholar 

  11. 11.

    Kumari, N., Prabhu, D.R., Pathak, P.N.: Uranium extraction studies employing tributyl phosphate and N,N-dihexyl octanamide as extractants: counter-current centrifugal contactors runs. Sep. Sci. Technol. 48, 2479–2485 (2013)

    CAS  Article  Google Scholar 

  12. 12.

    Mahanty, B., Kanekar, A.S., Ansari, S.A., Bhattacharyya, A., Mohapatra, P.K.: Separation of neptunium from actinides by monoamides: a solvent extraction study. Radiochim. Acta 107, 369–376 (2019)

    CAS  Article  Google Scholar 

  13. 13.

    Manchanda, V.K., Pathak, P.N.: Amides and diamides as promising extractants in the back end of the nuclear fuel cycle: an overview. Sep. Purif. Technol. 35, 85–103 (2004)

    CAS  Article  Google Scholar 

  14. 14.

    Mohapatra, P.K.: Actinide ion extraction using room temperature ionic liquids: opportunities and challenges for nuclear fuel cycle applications. Dalton Trans. 46, 1730–1747 (2017)

    CAS  Article  Google Scholar 

  15. 15.

    Mudring, A.V., Tang, S.: Ionic liquids for lanthanide and actinide chemistry. Eur. J. Inorg. Chem. 41, 2569–2581 (2010)

    Article  Google Scholar 

  16. 16.

    Murali, M.S., Bonville, N., Choppin, G.R.: Uranyl ion extraction into room temperature ionic liquids: species determination by ESI and MALDI-MS. Solvent Ext. Ion Exchange 28, 495–509 (2010)

    CAS  Article  Google Scholar 

  17. 17.

    Panja, S., Tripathi, S.C., Dhami, P.S., Gandhi, P.M.: Solvent extraction of Pu(IV) Using TBP: a comparative study of n-dodecane and a room temperature ionic liquid. Sep. Sci. Technol. 50, 2335–2341 (2015)

    CAS  Google Scholar 

  18. 18.

    Parikh, K.J., Pathak, P.N., Misra, S.K., Tripathi, S.C., Dakshinamoorthy, A., Manchanda, V.K.: Radiolytic degradation studies on N,N-dihexyloctanamide (DHOA) under purex process conditions. Solvent Ext. Ion Exchange 27, 244–256 (2009)

    CAS  Article  Google Scholar 

  19. 19.

    Pathak, P.N., Prabhu, D.R., Kanekar, A.S., Manchanda, V.K.: Recent R&D studies related to coprocessing of spent nuclear fuel using N,N-dihexyloctanamide. Sep. Sci. Technol. 44, 3650 (2009)

    CAS  Article  Google Scholar 

  20. 20.

    Pathak, P.N., Prabhu, D.R., Kanekar, A.S., Manchanda, V.K.: Evaluation of N,N-dialkyl amides as promising process extractants. Mat. Sci. Eng. 9, 012082 (2010)

    Google Scholar 

  21. 21.

    Pathak, P.N., Prabhu, D.R., Kumari, N., Kanekar, A.S., Manchanda, V.K.: Evaluation of N, N-dihexyloctanamide as an alternative extractant for spent fuel reprocessing: batch & mixer settler studies. Desal. Water Treat. 38, 40–45 (2012)

    CAS  Article  Google Scholar 

  22. 22.

    Pathak, P.N., Prabhu, D.R., Kumari, N., Mohapatra, P.K.: Studies on the extraction of actinides using a solvent containing D2EHiBA in room temperature ionic liquids: unusual extraction of the tetravalent Ions. Sep. Sci. Technol. 50, 373–379 (2015)

    CAS  Article  Google Scholar 

  23. 23.

    Prabhu, D.R., Ansari, S.A., Raut, D.R., Murali, M.S., Mohapatra, P.K.: Extraction behaviour of dioxouranium(VI) cation by two phosphorous-based liquid cationexchangers in room-temperature ionic liquids. Sep. Sci. Technol. 52, 2328–2337 (2017)

    CAS  Article  Google Scholar 

  24. 24.

    Prabhu, D.R., Mohapatra, P.K., Raut, D.R., Pathak, P.N., Billard, I.: Extraction of uranium(VI) from nitric acid solutions using N,N-dihexyloctanamide in ionic liquids: solvent extraction and spectroscopic studies: solvent extraction and spectroscopic studies. Solvent Ext. Ion Exchange 35, 423–438 (2017)

    CAS  Article  Google Scholar 

  25. 25.

    Rattan, S.S., Reddy, A.V.R., Mallapurkar, V.S., Singh, R.J., Prakash, S.: A method for the simultaneous estimation of 228Th and 229Th. J. Radioanal. Chem. 67, 95–99 (1981)

    CAS  Article  Google Scholar 

  26. 26.

    Rout, A., Venkatesan, K.A., Srinivasan, T.G., Vasudeva Rao, P.R.: Extraction behavior of actinides and fission products in amide functionalized ionic liquid. Sep. Purif. Technol. 97, 164–171 (2012)

    CAS  Article  Google Scholar 

  27. 27.

    Rout, A., Venkatesan, K.A., Srinivasan, T.G., Vasudeva Rao, P.R.: Liquid–liquid extraction of Pu(IV), U(VI) and Am(III) using malonamide in room temperature ionic liquid as diluent. J. Hazard. Mater. 221–222, 62–67 (2012)

    Article  Google Scholar 

  28. 28.

    Rout, A., Venkatesan, K.A., Antony, M.P., Vasudeva Rao, P.R.: Comparison in the extraction behavior of uranium(VI) from nitric acid medium using CHON based extractants, monoamide, malonamide and diglycolamide, dissolved in piperidinium ionic liquid. Sep. Sci. Technol. 51, 474–484 (2016)

    CAS  Article  Google Scholar 

  29. 29.

    Sajun, M.S., Ramakrishna, V.V., Patil, S.K.: The effect of temperature on the extraction of plutonium(IV) from nitric acid by tri-n-butyl phosphate. Thermochim. Acta 47, 277–286 (1981)

    CAS  Article  Google Scholar 

  30. 30.

    Schulz, W.W., Navratil, J.D.: Science and Technology of Tributyl phosphate. Vol. I: Synthesis, Poperties, Reactions and Analysis. CRC Press, Boca Raton, FL (1984)

  31. 31.

    Sun, M., Yuan, L.Y., Tan, Y., Zhao, Y.L., Chai, Z.F., Shi, W.Q.: Solvent extraction of uranium(VI) by a dipicolinamide using a room-temperature ionic liquid. Radiochim. Acta 102, 87–92 (2014)

    CAS  Google Scholar 

  32. 32.

    Sypula, M., Ouadi, A., Gaillard, C., Billard, I.: Kinetics of metal extraction in ionic liquids, Eu3+/HNO3//TODGA/[C1C4im][Tf2N] as a case study. RSC Adv. 3, 10736–10744 (2013)

    CAS  Article  Google Scholar 

  33. 33.

    Taylor, R.J., Denniss, I.S., Wallwork, A.L.: Neptunium control in an advanced Purex process. Nucl. Energy 36, 39 (1997)

    CAS  Google Scholar 

  34. 34.

    Vasudeva Rao, P.R., Venkatesan, K.A., Rout, A., Srinivasan, T.G., Nagarajan, K.: Potential applications of room temperature ionic liquids for fission products and actinide separation. Sep. Sci. Technol. 47, 204–222 (2012)

    CAS  Article  Google Scholar 

  35. 35.

    Venkatesan, K.A., Srinivasan, T.G., Vasudeva Rao, P.R.: A review on the electrochemical applications of room temperature ionic liquids in nuclear fuel cycle. J. Nucl. Radiochem. Sci. 10, R1–R6 (2009)

    CAS  Article  Google Scholar 

  36. 36.

    Welton, T.: Room temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2084 (1999)

    CAS  Article  Google Scholar 

  37. 37.

    Weyershausen, B., Lehmann, K.: Industrial application of ionic liquids as performance additives. Green Chem. 7, 15–19 (2005)

    CAS  Article  Google Scholar 

  38. 38.

    Yang, F., Kubota, F., Kamiya, N., Goto, M.: A comparative study of ionic liquids and a conventional organic solvent on the extraction of rare-earth ions with TOPO. Solv. Extract Res. Dev. Jpn. 20, 225 (2013)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. P.K. Pujari, Head, Radiochemistry Division and Director, Radiochemistry & Isotope Group for his support and constant encouragement.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. K. Mohapatra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mahanty, B., Verma, P.K. & Mohapatra, P.K. Extraction of Some Actinide Ions from Nitric Acid Feeds Using N, N-di-n-hexyloctanamide (DHOA) in an Ionic Liquid. J Solution Chem 49, 763–776 (2020). https://doi.org/10.1007/s10953-020-00970-8

Download citation

Keywords

  • Actinides
  • DHOA
  • Ionic liquid
  • Extraction
  • Separation