Journal of Solution Chemistry

, Volume 47, Issue 5, pp 939–949 | Cite as

Salt Modulated Fibrillar Aggregation of the Sweet Protein MNEI in Aqueous Solution

  • Federica Donnarumma
  • Alessandro Emendato
  • Serena Leone
  • Carmine Ercole
  • Gerardino D’Errico
  • Delia Picone


The mechanism of conversion of globular native proteins into amyloid fibrils represents one of the most attractive research topics in biophysics, because of its involvement in the development of severe pathologies and in various biotechnological processes. Aqueous medium properties, such as pH and ionic strength, as well as interactions with other species in solution, play a key role in tuning the fibrillization process. Here, we describe a comparative study of the influence of different ions from the Hofmeister series on the thermal unfolding and aggregation propensity of MNEI, a model protein, selected because of its tendency to form amyloid aggregates at acidic pH, even at temperatures well below its melting temperature. By selecting a temperature at which only negligible amounts of protein are unfolded, we have focused on the effect of ions on fibril formation. ThT fluorescence experiments indicated that all the salts examined increased the rate and the extent of fibrillization. Moreover, we found that anions, particularly sulfate, strongly influence the process, which instead is only marginally affected by different cations. Finally, a specific link to the chloride concentration was detected.


Protein aggregation Protein–ions interactions Hofmeister series ThT fluorescence 



The financial support of the “Fondazione con il Sud” (Grant No. 2011-PDR-19) is gratefully acknowledged. FD was recipient a fellowship financed by Regione Campania (POR Campania FSE 2014–2020).

Supplementary material

10953_2018_764_MOESM1_ESM.docx (576 kb)
Supplementary material 1 (DOCX 575 kb)


  1. 1.
    Buell, A.K., Hung, P., Salvatella, X., Welland, M.E., Dobson, C.M., Knowles, T.P.J.: Electrostatic effects in filamentous protein aggregation. Biophys. J. 104, 1116–1126 (2013). CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Marek, P.J., Patsalo, V., Green, D.F., Raleigh, D.P.: Ionic strength effects on amyloid formation by amylin are a complicated interplay among Debye screening, ion selectivity, and Hofmeister effects. Biochemistry 51, 8478–8490 (2012). CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Sirangelo, I., Iannuzzi, C.: The role of metal binding in the amyotrophic lateral sclerosis-related aggregation of copper–zinc superoxide dismutase. Molecules 22, 1429 (2017). CrossRefGoogle Scholar
  4. 4.
    Koelsch, P., Motschmann, H.: An experimental route to Hofmeister. Curr. Opin. Colloid Interface Sci. 9, 87–91 (2004). CrossRefGoogle Scholar
  5. 5.
    Lee, E., Choi, J.-H., Cho, M.: The effect of Hofmeister anions on water structure at protein surfaces. Phys. Chem. Chem. Phys. 19, 20008–20015 (2017). CrossRefPubMedGoogle Scholar
  6. 6.
    Násztor, Z., Dér, A., Bogár, F.: Ion-induced alterations of the local hydration environment elucidate Hofmeister effect in a simple classical model of Trp-cage miniprotein. J. Mol. Model. 23, 298 (2017). CrossRefPubMedGoogle Scholar
  7. 7.
    Bye, J.W., Baxter, N.J., Hounslow, A.M., Falconer, R.J., Williamson, M.P.: Molecular mechanism for the Hofmeister effect derived from NMR and DSC measurements on barnase. ACS Omega. 1, 669–679 (2016). CrossRefGoogle Scholar
  8. 8.
    Imperatore, R., Vitiello, G., Ciccarelli, D., D’Errico, G.: Effects of salts on the micellization of a short-tailed nonionic ethoxylated surfactant: an intradiffusion study. J. Solution Chem. 43, 227–239 (2014). CrossRefGoogle Scholar
  9. 9.
    Dér, A., Kelemen, L., Fábián, L., Taneva, S.G., Fodor, E., Páli, T., Cupane, A., Cacace, M.G., Ramsden, J.J.: Interfacial water structure controls protein conformation. J. Phys. Chem. B. 111, 5344–5350 (2007). CrossRefPubMedGoogle Scholar
  10. 10.
    Chaplin, M.F.: A proposal for the structuring of water. Biophys. Chem. 83, 211–221 (2000)CrossRefPubMedGoogle Scholar
  11. 11.
    Salis, A., Ninham, B.W.: Models and mechanisms of Hofmeister effects in electrolyte solutions, and colloid and protein systems revisited. Chem. Soc. Rev. 43, 7358–7377 (2014). CrossRefPubMedGoogle Scholar
  12. 12.
    Kim, S.-H., Kang, C.-H., Kim, R., Cho, J.M., Lee, Y.-B., Lee, T.-K.: Redesigning a sweet protein: increased stability and renaturability. Protein Eng. 2, 571–575 (1989). CrossRefPubMedGoogle Scholar
  13. 13.
    Tancredi, T., Iijima, H., Saviano, G., Amodeo, P., Temussi, P.A.: Structural determination of the active site of a sweet protein A 1H NMR investigation of pMNEI. FEBS Lett. 310, 27–30 (1992). CrossRefPubMedGoogle Scholar
  14. 14.
    Esposito, V., Gallucci, R., Picone, D., Saviano, G., Tancredi, T., Temussi, P.A.: The importance of electrostatic potential in the interaction of sweet proteins with the sweet taste receptor. J. Mol. Biol. 360, 448–456 (2006). CrossRefPubMedGoogle Scholar
  15. 15.
    Leone, S., Picone, D.: Molecular dynamics driven design of pH-stabilized mutants of MNEI, a sweet protein. PLoS ONE 11, e0158372 (2016). CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Leone, S., Pica, A., Merlino, A., Sannino, F., Temussi, P.A., Picone, D.: Sweeter and stronger: enhancing sweetness and stability of the single chain monellin MNEI through molecular design. Sci. Rep. 6, 34045 (2016). CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Liu, Q., Li, L., Yang, L., Liu, T., Cai, C., Liu, B.: Modification of the sweetness and stability of sweet-tasting protein monellin by gene mutation and protein engineering. Biomed. Res. Int. 2016, e3647173 (2016). CrossRefGoogle Scholar
  18. 18.
    Cai, C., Li, L., Lu, N., Zheng, W., Yang, L., Liu, B.: Expression of a high sweetness and heat-resistant mutant of sweet-tasting protein, monellin, in Pichia pastoris with a constitutive GAPDH promoter and modified N-terminus. Biotechnol. Lett. (2016). CrossRefPubMedGoogle Scholar
  19. 19.
    Zheng, W., Yang, L., Cai, C., Ni, J., Liu, B.: Expression, purification and characterization of a novel double-sites mutant of the single-chain sweet-tasting protein monellin (MNEI) with both improved sweetness and stability. Protein Expr. Purif. 143, 52–56 (2018). CrossRefPubMedGoogle Scholar
  20. 20.
    Morris, J.A., Cagan, R.H.: Purification of monellin, the sweet principle of Dioscoreophyllum cumminsii. Biochim. Biophys. Acta. 261, 114–122 (1972). CrossRefPubMedGoogle Scholar
  21. 21.
    Temussi, P.A.: Why are sweet proteins sweet? Interaction of brazzein, monellin and thaumatin with the T1R2–T1R3 receptor. FEBS Lett. 526, 1–4 (2002)CrossRefPubMedGoogle Scholar
  22. 22.
    Spadaccini, R., Crescenzi, O., Tancredi, T., De Casamassimi, N., Saviano, G., Scognamiglio, R., Di Donato, A., Temussi, P.A.: Solution structure of a sweet protein: NMR study of MNEI, a single chain monellin. J. Mol. Biol. 305, 505–514 (2001). CrossRefPubMedGoogle Scholar
  23. 23.
    Hobbs, J.R., Munger, S.D., Conn, G.L.: Monellin (MNEI) at 1.15 Å resolution. Acta Crystallogr. F 63, 162–167 (2007). CrossRefGoogle Scholar
  24. 24.
    Ghiso, J., Jensson, O., Frangione, B.: Amyloid fibrils in hereditary cerebral hemorrhage with amyloidosis of Icelandic type is a variant of gamma-trace basic protein (cystatin C). Proc. Natl. Acad. Sci. USA 83, 2974–2978 (1986)CrossRefPubMedGoogle Scholar
  25. 25.
    Murzin, A.G.: Sweet-tasting protein monellin is related to the cystatin family of thiol proteinase inhibitors. J. Mol. Biol. 230, 689–694 (1993). CrossRefPubMedGoogle Scholar
  26. 26.
    Konno, T.: Multistep nucleus formation and a separate subunit contribution of the amyloidgenesis of heat-denatured monellin. Protein Sci. 10, 2093–2101 (2001). CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Konno, T., Murata, K., Nagayama, K.: Amyloid-like aggregates of a plant protein: a case of a sweet-tasting protein, monellin. FEBS Lett. 454, 122–126 (1999). CrossRefPubMedGoogle Scholar
  28. 28.
    Rega, M.F., Di Monaco, R., Leone, S., Donnarumma, F., Spadaccini, R., Cavella, S., Picone, D.: Design of sweet protein based sweeteners: Hints from structure–function relationships. Food Chem. 173, 1179–1186 (2015). CrossRefPubMedGoogle Scholar
  29. 29.
    Esposito, V., Guglielmi, F., Martin, S.R., Pauwels, K., Pastore, A., Piccoli, R., Temussi, P.A.: Aggregation mechanisms of cystatins: a comparative study of monellin and oryzacystatin. Biochemistry 49, 2805–2810 (2010). CrossRefPubMedGoogle Scholar
  30. 30.
    Pica, A., Leone, S., Di, G., Donnarumma, F., Emendato, A., Rega, M.F., Merlino, A., Picone, D.: pH driven fibrillar aggregation of the super-sweet protein Y65R-MNEI: a step-by-step structural analysis. Biochim. Biophys. Acta 1862, 808–815 (2018). CrossRefGoogle Scholar
  31. 31.
    Patra, A.K., Udgaonkar, J.B.: Characterization of the folding and unfolding reactions of single-chain monellin: evidence for multiple intermediates and competing pathways. Biochemistry 46, 11727–11743 (2007). CrossRefPubMedGoogle Scholar
  32. 32.
    Kimura, T., Maeda, A., Nishiguchi, S., Ishimori, K., Morishima, I., Konno, T., Goto, Y., Takahashi, S.: Dehydration of main-chain amides in the final folding step of single-chain monellin revealed by time-resolved infrared spectroscopy. Proc. Natl. Acad. Sci. USA 105, 13391–13396 (2008). CrossRefPubMedGoogle Scholar
  33. 33.
    Jha, S.K., Udgaonkar, J.B.: Direct evidence for a dry molten globule intermediate during the unfolding of a small protein. Proc. Natl. Acad. Sci. USA 106, 12289–12294 (2009). CrossRefPubMedGoogle Scholar
  34. 34.
    Malhotra, P., Udgaonkar, J.B.: High-energy intermediates in protein unfolding characterized by thiol labeling under native like conditions. Biochemistry 53, 3608–3620 (2014). CrossRefPubMedGoogle Scholar
  35. 35.
    Goluguri, R.R., Udgaonkar, J.B.: Rise of the helix from a collapsed globule during the folding of monellin. Biochemistry 54, 5356–5365 (2015). CrossRefPubMedGoogle Scholar
  36. 36.
    Maity, H., Reddy, G.: Thermodynamics and kinetics of single-chain monellin folding with structural insights into specific collapse in the denatured state ensemble. J. Mol. Biol. (2017). CrossRefPubMedGoogle Scholar
  37. 37.
    Aghera, N., Dasgupta, I., Udgaonkar, J.B.: A buried ionizable residue destabilizes the native state and the transition state in the folding of monellin. Biochemistry 51, 9058–9066 (2012). CrossRefPubMedGoogle Scholar
  38. 38.
    Spadaccini, R., Leone, S., Rega, M.F., Richter, C., Picone, D.: Influence of pH on the structure and stability of the sweet protein MNEI. FEBS Lett. 590, 3681–3689 (2016). CrossRefPubMedGoogle Scholar
  39. 39.
    Leone, S., Sannino, F., Tutino, M.L., Parrilli, E., Picone, D.: Acetate: friend or foe? Efficient production of a sweet protein in Escherichia coli BL21 using acetate as a carbon source. Microb. Cell Factories. 14, 106 (2015). CrossRefGoogle Scholar
  40. 40.
    Greenfield, N.J.: Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat. Protoc. 1, 2527–2535 (2006). CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Xue, C., Lin, T.Y., Chang, D., Guo, Z.: Thioflavin T as an amyloid dye: fibril quantification, optimal concentration and effect on aggregation. R. Soc. Open Sci. 4, 160696 (2017). CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Sabate, R., Rodriguez-Santiago, L., Sodupe, M., Saupe, S.J., Ventura, S.: Thioflavin-T excimer formation upon interaction with amyloid fibers. Chem. Commun. 49, 5745–5747 (2013). CrossRefGoogle Scholar
  43. 43.
    Adrover, M., Mariño, L., Sanchis, P., Pauwels, K., Kraan, Y., Lebrun, P., Vilanova, B., Muñoz, F., Broersen, K., Donoso, J.: Mechanistic insights in glycation-induced protein aggregation. Biomacromolecules 15, 3449–3462 (2014). CrossRefPubMedGoogle Scholar
  44. 44.
    Mariño, L., Pauwels, K., Casasnovas, R., Sanchis, P., Vilanova, B., Muñoz, F., Donoso, J., Adrover, M.: Ortho-methylated 3-hydroxypyridines hinder hen egg-white lysozyme fibrillogenesis. Sci. Rep. (2015). CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Stewart, K.L., Radford, S.E.: Amyloid plaques beyond Aβ: a survey of the diverse modulators of amyloid aggregation. Biophys. Rev. 9, 405–419 (2017). CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Han, J.Y., Choi, T.S., Kim, H.I.: Molecular role of Ca2+ and hard divalent metal cations on accelerated fibrillation and interfibrillar aggregation of α-synuclein. Sci. Rep. 8, 1895 (2018). CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ramis, R., Ortega-Castro, J., Vilanova, B., Adrover, M., Frau, J.: A systematic DFT study of some plausible Zn(II) and Al(III) interaction sites in N-terminally acetylated α-synuclein. J. Phys. Chem. A 122, 690–699 (2018). CrossRefPubMedGoogle Scholar
  48. 48.
    Ramis, R., Ortega-Castro, J., Vilanova, B., Adrover, M., Frau, J.: Copper(II) binding sites in N-terminally acetylated α-synuclein: a theoretical rationalization. J. Phys. Chem. A 121, 5711–5719 (2017). CrossRefPubMedGoogle Scholar
  49. 49.
    Klement, K., Wieligmann, K., Meinhardt, J., Hortschansky, P., Richter, W., Fändrich, M.: Effect of different salt ions on the propensity of aggregation and on the structure of Alzheimer’s Aβ(1-40) amyloid fibrils. J. Mol. Biol. 373, 1321–1333 (2007). CrossRefPubMedGoogle Scholar
  50. 50.
    Munishkina, L.A., Henriques, J., Uversky, V.N., Fink, A.L.: Role of protein–water interactions and electrostatics in alpha-synuclein fibril formation. Biochemistry 43, 3289–3300 (2004). CrossRefPubMedGoogle Scholar
  51. 51.
    Yeh, V., Broering, J.M., Romanyuk, A., Chen, B., Chernoff, Y.O., Bommarius, A.S.: The Hofmeister effect on amyloid formation using yeast prion protein. Protein Sci. 19, 47–56 (2010). CrossRefPubMedGoogle Scholar
  52. 52.
    Arosio, P., Jaquet, B., Wu, H., Morbidelli, M.: On the role of salt type and concentration on the stability behavior of a monoclonal antibody solution. Biophys. Chem. 168–169, 19–27 (2012). CrossRefPubMedGoogle Scholar
  53. 53.
    Yang, D.S., Yip, C.M., Huang, T.H., Chakrabartty, A., Fraser, P.E.: Manipulating the amyloid-beta aggregation pathway with chemical chaperones. J. Biol. Chem. 274, 32970–32974 (1999)CrossRefPubMedGoogle Scholar
  54. 54.
    Sikkink, L.A., Ramirez-Alvarado, M.: Salts enhance both protein stability and amyloid formation of an immunoglobulin light chain. Biophys. Chem. 135, 25–31 (2008). CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Zhang, Y., Cremer, P.S.: Chemistry of Hofmeister anions and osmolytes. Annu. Rev. Phys. Chem. 61, 63–83 (2010). CrossRefPubMedGoogle Scholar
  56. 56.
    Light, T.P., Corbett, K.M., Metrick, M.A., MacDonald, G.: Hofmeister ion-induced changes in water structure correlate with changes in solvation of an aggregated protein complex. Langmuir 32, 1360–1369 (2016). CrossRefPubMedGoogle Scholar
  57. 57.
    Parsons, D.F., Boström, M., Nostro, P.L., Ninham, B.W.: Hofmeister effects: interplay of hydration, nonelectrostatic potentials, and ion size. Phys. Chem. Chem. Phys. 13, 12352–12367 (2011). CrossRefPubMedGoogle Scholar
  58. 58.
    Gokarn, Y.R., Fesinmeyer, R.M., Saluja, A., Razinkov, V., Chase, S.F., Laue, T.M., Brems, D.N.: Effective charge measurements reveal selective and preferential accumulation of anions, but not cations, at the protein surface in dilute salt solutions. Protein Sci. 20, 580–587 (2011). CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Federica Donnarumma
    • 1
  • Alessandro Emendato
    • 1
  • Serena Leone
    • 1
  • Carmine Ercole
    • 1
  • Gerardino D’Errico
    • 1
  • Delia Picone
    • 1
  1. 1.Department of Chemical SciencesUniversity of Naples Federico II, Complesso Universitario di Monte Sant’AngeloNaplesItaly

Personalised recommendations