Skip to main content
Log in

Thermodynamic Properties of l-Aspartates of Alkali and Alkali-Earth Metals in Aqueous Solutions at 298.15 and 310.15 K and Specific Cation Effects on Biomolecule Solvation

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Vapor pressure osmometry was applied to the systems calcium l-aspartate ((S)-aminobutanedioic acid calcium salt) + water for varying molalities of Ca–l-Asp (mCa–l-Asp = 0.01–1.02 mol·kg−1) and guanidinium hydrochloride (methanamidine hydrochloride) + sodium L–aspartate ((S)–aminobutanedioic acid sodium salt) + water, varying the molalities of GndmCl and Na–l-Asp (mNa–l-Asp = 0.1, 0.25, 0.4, 0.57 mol·kg−1 and mGndmCl = 0.1–1.1 mol·kg−1) at T = 298.15 K and 310.15 K. From vapor pressure osmometry, activities of water, and the corresponding osmotic coefficients of the mixtures Ca–l-Asp + water and Na–l-Asp + GndmCl + water have been calculated, both being directly related to the chemical potentials of the different species and therefore to their Gibbs energy. Mean molal ion activity coefficients were obtained from experimental data fits with the Pitzer equations and the corresponding dual and triple interaction parameters were derived for the Ca–l-Asp + water binary system. β(2) Pitzer parameters different from zero are required for Ca–l-Asp in water to reproduce the osmotic coefficient decrease with increasing concentration. Mean Spherical Approximation parameters accounting for Coulomb and short range interactions that describe the calcium and magnesium aspartates and glutamates are given. The decrease in the chemical potential of the aspartates corresponds to the Hofmeister series: NaAsp > Mg(Asp)2 > CaAsp. A strong interaction between amino acid and salt due to specific dispersion interactions in amino acid salt systems containing guanidinium based salt has been revealed that is in agreement with MD and half-empirical quantum-chemical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10: a

Similar content being viewed by others

References

  1. Prausnitz, J.M., Lichtenthaler, R.N., de Azevedo, E.G.: Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd edn. Prentice-Hall, Upper Saddle River (1999)

    Google Scholar 

  2. Kunz, W. (ed.): Specific Ion Effects. World Scientific, London (2010)

    Google Scholar 

  3. Duclohier, H. (ed.): Biophysics of Ion Channels and Diseases. Research Signpost, Kerala (2010)

    Google Scholar 

  4. Calvar, N., Gomez, E., Dominguez, A., Macedo, E.A.: Vapour pressures, osmotic and activity coefficients for binary mixtures containing (1-ethylpyridinium ethylsulfate + several alcohols) at T = 323.15 K. J. Chem. Thermodyn. 42, 625–630 (2010)

    Article  CAS  Google Scholar 

  5. Calvar, N., Dominguez, A., Macedo, E.A.: Vapour pressures and osmotic coefficients of binary mixtures containing alcohol and pyrrolidinium-based ionic liquids. J. Chem. Thermodyn. 66, 137–143 (2013)

    Article  CAS  Google Scholar 

  6. Kushare, S.K., Shaikh, V.R., Terdale, S.S., Dagade, D.H., Kolhapurkar, R.R., Patil, K.J.: Thermodynamics of aqueous polyethylene-glycol (PEG) solutions at 298.15 K: activity, activity coefficients and application of molecular theories. J. Mol. Liq. 187, 129–136 (2013)

    Article  CAS  Google Scholar 

  7. Tsurko, E.N., Neueder, R., Kunz, W.: Activity of water, osmotic and activity coefficients of sodium glutamate and sodium aspartate in aqueous solutions at 310.15 K. Acta Chim. Slov. 56, 58–64 (2009)

    CAS  Google Scholar 

  8. Shuching, O., Di, C., Sandeep, P.: Liquid–vapour interfacial properties of aqueous solutions of guanidinium and methyl guanidinium chloride: influence of molecular orientation and interface fluctuations. J. Phys. Chem. B. 117, 11719–11731 (2013)

    Article  Google Scholar 

  9. Lund, M., Vrbka, L., Jungwirth, P.: Specific ion binding to nonpolar surface patches of proteins. J. Am. Chem. Soc. 130, 11582–11583 (2008)

    Article  CAS  Google Scholar 

  10. Vazdar, M., Uhlig, F., Jungwirth, P.: Like-charge ion pairing in water: an ab initio molecular dynamics study of aqueous guanidinium cations. J. Phys. Chem. Lett. 3, 2021–2024 (2012)

    Article  CAS  Google Scholar 

  11. Barthel, J., Neueder, R.: Precision apparatus for the static determination of the vapor pressure of solutions. GIT Fachz. Lab. 28, 1002–1012 (1984)

    CAS  Google Scholar 

  12. Widera, B., Neueder, R., Kunz, W.: Vapor pressures and osmotic coefficients of aqueous solutions of SDS, C6TAB, and C8TAB at 25 °C. Langmuir 19, 8226–8229 (2003)

    Article  CAS  Google Scholar 

  13. Gibbard, H.F., Scatchard, G.J., Rousseau, R.A., Creek, J.L.: Liquid–vapor equilibrium of aqueous sodium chloride from 298 to 373 K and from 1 to 6 mol·kg−1, and related properties. J. Chem. Eng. Data 19, 281–288 (1973)

    Article  Google Scholar 

  14. Tsurko, E.N., Neueder, R., Kunz, W.: Water activity and osmotic coefficients in solutions of glycine, glutamic acid, histidine and their salts at 298.15 K and 310.15 K. J. Solution Chem. 36, 651–672 (2007)

    Article  CAS  Google Scholar 

  15. Pitzer, K.S. (ed.): Activity Coefficients in Electrolyte Solutions, 2nd edn. CRC Press, Boca Raton, pp. 75–153 (1991)

  16. Keenan, J.H., Keyes, F.G., Hill, P.G., Moore, J.G.: Steam Tables: Thermodynamic Properties of Water Including Vapor, Liquid, and Solid Phases. Wiley, New York (1969)

    Google Scholar 

  17. Ellison, W.J., Lamkaouchi, K., Moreau, J.-M.: Water: a dielectric reference. J. Mol. Liq. 68, 171–279 (1996)

    Article  CAS  Google Scholar 

  18. Tsurko, E.N., Neueder, R., Kunz, W.: Osmotic coefficients of two amino acid magnesium salts at 298.15 and 310.15 K. J. Solution Chem. 45, 313–324 (2016)

    Article  CAS  Google Scholar 

  19. Pitzer, K.S., Mayorga, G.: Thermodynamics of electrolytes. III. Activity and osmotic coefficients for 2–2 electrolytes. J. Solution Chem. 3, 539–546 (1974)

    Article  CAS  Google Scholar 

  20. Bonner, O.D.: Osmotic and activity coefficients of sodium and potassium glutamate at 298.15 K. J. Chem. Eng. Data 26, 147–148 (1981)

    Article  CAS  Google Scholar 

  21. Blum, L., Hoye, J.S.: Mean spherical model for asymmetric electrolytes. 2. Thermodynamic properties and the pair correlation function. J. Phys. Chem. 81, 1311–1316 (1977)

    Article  CAS  Google Scholar 

  22. Carnahan, N.F., Starling, K.E.: Equation of State for Nonattracting Rigid Spheres. J. Chem. Phys. 51(2), 635–636 (1969)

    Article  CAS  Google Scholar 

  23. Blum, L.: In: Henderson, H., Eyring, D. (eds.) Theoretical Chemistry: Advances and Perspectives, vol. 5, Academic Press, New York (1980)

  24. Krestov, G.A.: Thermodynamics of Ionic Processes in Solutions. Khimija, Leningrad (1984)

    Google Scholar 

  25. Kharakoz, D.P.: Volumetric properties of proteins and their analogs in diluted solutions. Biophys. Chem. 34, 115–125 (1989)

    Article  CAS  Google Scholar 

  26. Mande, M.M., Kishore, N.: Volumetric properties of aqueous 2-chloroethanol solutions and volumes of transfer of some amino acids and peptides from water to aqueous 2-chloroethanol solutions. J. Solution Chem. 32, 791–802 (2003)

    Article  Google Scholar 

  27. Barrett, G.C. (ed.): Chemistry and Biochemistry of the Amino Acids. Chapman and Hall, London (1985)

    Google Scholar 

  28. Held, C., Tsurko, E.N., Neueder, R., Sadowski, G., Kunz, W.: Cation effect on the water activity of ternary (S)-aminobutanedioic acid magnesium salt solutions at 298.15 and 310.15 K. J. Chem. Eng. Data 61, 3190–3199 (2016)

    Article  CAS  Google Scholar 

  29. Jungwirth, P., Tobias, D.J.: Molecular structure of salt solutions: a new view of the interface with implications for heterogeneous atmospheric chemistry. J. Phys. Chem. B. 105(43), 10468–10472 (2001)

    Article  CAS  Google Scholar 

  30. Jungwirth, P., Tobias, D.J.: Specific ion effects at the air/water interface. Chem. Rev. 106(4), 1259–1281 (2006)

    Article  CAS  Google Scholar 

  31. Mason, P.E., Dempsey, C.E., Neilson, G.W., Brady, J.W.: Nanometer-scale ion aggregates in aqueous electrolyte solutions: guanidinium sulfate and guanidinium thiocyanate. J. Phys. Chem. B. 109, 24185–24196 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding was provided by Scientific-research theme of fundamental studies of Ministry of Education and Science of Ukraine, financed from the state budget of Ukraine. The authors would like to acknowledge gratefully Prof. Vasiliy I. Larin for the permanent help on this research, Olena S. Bondareva, Olesja O. Kulinich for taking part in the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena N. Tsurko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsurko, E.N., Neueder, R. & Kunz, W. Thermodynamic Properties of l-Aspartates of Alkali and Alkali-Earth Metals in Aqueous Solutions at 298.15 and 310.15 K and Specific Cation Effects on Biomolecule Solvation. J Solution Chem 47, 727–748 (2018). https://doi.org/10.1007/s10953-018-0750-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-018-0750-z

Keywords

Navigation