Advertisement

Journal of Solution Chemistry

, Volume 47, Issue 4, pp 634–653 | Cite as

Determination of Abraham Model Correlations for Solute Transfer into Propyl Acetate Based on Experimental Activity Coefficient and Solubility Data

  • Igor A. Sedov
  • Timur M. Salikov
  • Diliara R. Khaibrakhmanova
  • Anisha Wadawadigi
  • Olivia Zha
  • Ellen Qian
  • Erin Hart
  • Maribel Barrera
  • William E. AcreeJr.
  • Michael H. Abraham
Article

Abstract

Experimental infinite dilution activity coefficients, gas-to-liquid partition coefficients, and molar solubility data have been measured for numerous organic solutes dissolved in propyl acetate. Results of our experimental measurements, combined with published solubility data retrieved from the published literature, have been used to derive Abraham model correlations for describing solute transfer into propyl acetate. The derived Abraham model correlations describe the experimental data to within 0.11 log10 units. Calculation of Abraham model solute descriptors for boscalid was illustrated using our derived solute transfer correlations into propyl acetate. Predictions using the calculated solute descriptors indicate that boscalid would show significant partitioning into the skin and fat tissues in the body, and would exhibit considerable baseline toxicity towards the eight aquatic organisms (five fish species and three water flea species).

Keywords

Infinite dilution activity coefficients Gas-to-organic solvent partition coefficients Water-to-organic solvent partition coefficients Molar solubilities Aquatic toxicity Blood-to-tissue partition coefficients 

List of Symbols

ak

Solvent property in Eq. 2 of the Abraham model reflecting the ability of the organic solvent to act as an H-bond acceptor

ap

Solvent property in Eq. 1 of the Abraham model reflecting the ability of the organic solvent to act as an H-bond acceptor

bk

Solvent property in Eq. 2 of the Abraham model reflecting the ability of the organic solvent to act as an H-bond donor

bp

Solvent property in Eq. 1 of the Abraham model reflecting the ability of the organic solvent to act as an H-bond donor

ck

Constant in Eq. 2 of the Abraham model

cp

Constant in Eq. 1 of the Abraham model

ek

Solvent property in Eq. 2 of the Abraham model reflecting the ability of the organic solvent to interact with dissolved solutes by electron lone pair interactions

ep

Solvent property in Eq. 1 of the Abraham model reflecting the ability of the organic solvent to interact with dissolved solutes by electron lone pair interactions

lk

Solvent property in Eq. 2 of the Abraham model describing the dispersion forces/cavity formation

\( p_{\text{solute}}^{\text{o}} \)

Is the vapor pressure of the solute at 298.15 K

sk

Solvent property in Eq. 2 of the Abraham model that reflects the dipolarity/polarizability of the organic solvent

sp

Solvent property in Eq. 1 of the Abraham model that reflects the dipolarity/polarizability of the organic solvent

vp

Solvent property in Eq. 1 of the Abraham model describing the dispersion forces/cavity formation

A

Abraham model solute descriptor corresponding to the overall or total hydrogen-bond acidity

B

Abraham model solute descriptor corresponding to the overall or total hydrogen-bond basicity

CS,gas

Molar gas phase concentration of the solute used in calculating the solubility ratio for Eq. 2 of the Abraham model

CS,organic

Molar solubility of the solute in the organic solvent

CS,water

Molar solubility of the solute in water

E

Solute descriptor corresponding to the solute excess molar refractivity in units of (cm3·mol−1)/10,

ΔsolvG

Is the Gibbs energy of solvation of the solute

K

Is the solute’s gas-to-organic solvent partition coefficient

Kw

Is the solute’s gas-to-water partition coefficient at 298.15 K

L

Is defined as the logarithm of the gas-to-hexadecane partition coefficient at 298 K

P

Is the solute’s water-to-organic solvent partition coefficient

R

Is the universal gas constant

S

Abraham model solute descriptor that quantifies the dipolarity/polarizability of the solute

T

Is the system temperature in Kelvin

V

Refers to the McGowan volume in units of (cm3·mol−1)/100

Vsolute

Is the molar volume of the solute

Vsolvent

Is the molar volume of the solvent at 298.15 K

\( X_{{{\text{S}} . {\text{organic}}}}^{ \exp } \)

Is the experimental mole fraction solubility of the solute in the organic solvent

Greek Symbol

\( \gamma_{\infty } \)

Is the infinite dilution activity coefficient of the solute

Notes

Acknowledgements

The work of Igor Sedov, Timur Salikov, and Diliara Khaibrakhmanova was performed according to the Russian Government Program of Competitive Growth of Kazan Federal University. Anisha Wadawadigi, Olivia Zha, and Ellen Qian thank the University of North Texas Texas Academy of Mathematics and Science (TAMS) program for providing a summer research scholarship to each student. Maribel Barrera thanks the University of North Texas and the U.S. Department of Education for support provided under the Ronald E. McNair Postbaccalaureate Achievement Program.

References

  1. 1.
    Sedov, I.A., Magsumov, T.I., Hart, E., Higgins, E., Grover, D., Zettl, H., Zad, M., Acree Jr., W.E., Abraham, M.H.: Abraham model expressions for describing water-to-diethylene glycol and gas-to-diethylene glycol solute transfer processes at 298.15 K. J. Solution Chem. 46, 331–351 (2017)CrossRefGoogle Scholar
  2. 2.
    Sedov, I.A., Magsumov, T.I., Solomonov, B.N.: Thermodynamic functions of solvation of benzene in various binary aqueous–organic solvents. J. Mol. Liq. 224, 1205–1209 (2016)CrossRefGoogle Scholar
  3. 3.
    Sedov, I.A., Salikov, T., Hart, E., Higgins, E., Acree Jr., W.E., Abraham, M.H.: Abraham model linear free energy relationships for describing the partitioning and solubility behavior of nonelectrolyte organic solutes dissolved in pyridine at 298.15 K. Fluid Phase Equilib. 431, 66–74 (2017)CrossRefGoogle Scholar
  4. 4.
    Sedov, I.A., Magsumov, T.I., Solomonov, B.N.: Solvation of hydrocarbons in aqueous–organic mixtures. J. Chem. Thermodyn. 96, 153–160 (2016)CrossRefGoogle Scholar
  5. 5.
    Sedov, I.A., Magsumov, T.I., Stolov, M.A., Solomonov, B.N.: Standard molar Gibbs free energy and enthalpy of solvation of low polar solutes in formamide derivatives at 298 K. Thermochim. Acta 623, 9–14 (2016)CrossRefGoogle Scholar
  6. 6.
    Sedov, I.A., Khaibrakhmanova, D., Hart, E., Grover, D., Zettl, H., Koshevarova, V., Dai, C., Zhang, S., Schmidt, A., Acree Jr., W.E., Abraham, M.H.: Development of Abraham model correlations for solute transfer into both 2-propoxyethanol and 2-isopropoxyethanol at 298.15 K. J. Mol. Liq. 212, 833–840 (2015)CrossRefGoogle Scholar
  7. 7.
    Hart, E., Grover, D., Zettl, H., Koshevarova, V., Zhang, S., Dai, C., Acree Jr., W.E., Sedov, I.A., Stolov, M.A., Abraham, M.H.: Abraham model correlations for solute transfer into 2-methoxyethanol from water and from the gas phase. J. Mol. Liq. 209, 738–744 (2015)CrossRefGoogle Scholar
  8. 8.
    Sedov, I.A., Stolov, M.A., Hart, E., Grover, D., Zettl, H., Koshevarova, V., Dai, C., Zhang, S., Acree Jr., W.E., Abraham, M.H.: Abraham model correlations for describing solute transfer into 2-butoxyethanol from both water and the gas phase at 298 K. J. Mol. Liq. 209, 196–202 (2015)CrossRefGoogle Scholar
  9. 9.
    Sedov, I.A., Stolov, M.A., Hart, E., Grover, D., Zettl, H., Koshevarova, V., Acree Jr., W.E., Abraham, M.H.: Abraham model correlations for solute transfer into 2-ethoxyethanol from water and from the gas phase. J. Mol. Liq. 208, 63–70 (2015)CrossRefGoogle Scholar
  10. 10.
    Sedov, I.A., Stolov, M.A., Solomonov, B.N.: Calorimetric study of solvation of low polar solutes in propylene glycol and methyl cellosolve at 298 K. Thermochim. Acta 589, 247–251 (2014)CrossRefGoogle Scholar
  11. 11.
    Sedov, I.A., Stolov, M.A., Solomonov, B.N.: Thermodynamics of solvation and solvophobic effect in formamide. J. Chem. Thermodyn. 64, 120–125 (2013)CrossRefGoogle Scholar
  12. 12.
    Hart, E., Ramirez, A.M., Cheeran, S., Barrera, M., Horton, M.Y., Wadawadigi, A., Acree Jr., W.E., Abraham, M.H.: Determination of Abraham model solute descriptors for 2-methyl-3-nitrobenzoic acid from measured solubility data in alcohol, alkyl ether, alkyl acetate and 2-alkoxyalcohol mono-solvents. Phys. Chem. Liq. 55, 796–804 (2017)CrossRefGoogle Scholar
  13. 13.
    Abraham, M.H., Acree Jr., W.E., Brumfield, M., Hart, E., Pipersburgh, L., Mateja, K., Dai, C., Grover, D., Zhang, S.: Deduction of physicochemical properties from solubilities: 2,4-dihydroxybenzophenone, biotin, and caprolactam as examples. J. Chem. Eng. Data 60, 1440–1446 (2015)CrossRefGoogle Scholar
  14. 14.
    Acree, W.E. Jr.: IUPAC–NIST Solubility Data Series. 99. Solubility of benzoic acid and substituted benzoic acids in both neat organic solvents and organic solvent mixtures. J. Phys. Chem. Ref. Data 42, 033103/1–033103/525 (2013)Google Scholar
  15. 15.
    Acree, W.E. Jr.: IUPAC–NIST Solubility Data Series. 98. Solubility of polycyclic aromatic hydrocarbons in pure and organic solvent mixtures–revised and updated. Part 3. Neat organic solvents. J. Phys. Chem. Ref. Data 42, 013105/1–013105/223 (2013)Google Scholar
  16. 16.
    Sedov, I.A., Stolov, M.A., Solomonov, B.N.: tert-Butyl chloride as a probe of the solvophobic effects. Fluid Phase Equilib. 382, 164–168 (2014)CrossRefGoogle Scholar
  17. 17.
    Sedov, I.A., Solomonov, B.N.: Gibbs free energy of hydrogen bonding of aliphatic alcohols with liquid water at 298 K. Fluid Phase Equilib. 315, 16–20 (2012)CrossRefGoogle Scholar
  18. 18.
    Farran, A., Cai, C., Sandoval, M., Xu, Y., Liu, J., Hernaiz, M.J., Linhardt, R.J.: Green solvents in carbohydrate chemistry: from raw materials to fine chemicals. Chem. Rev. 115, 6811–6853 (2015)CrossRefGoogle Scholar
  19. 19.
    Benazzouz, A., Moity, L., Pierlot, C., Sergent, M., Molinier, V., Aubry, J.-M.: Selection of a greener set of solvents evenly spread in the Hansen space by space-filling design. Ind. Eng. Chem. Res. 52, 16585–16597 (2013)CrossRefGoogle Scholar
  20. 20.
    Zhong, J.-F., Qin, X.-L., Wang, Y.-H.: An empirical model for predicting conversion of the synthesis of n-butyl lactate by lipase-catalyzed esterification. Xiandai Shipin Keji 29, 2612–2615 (2013)Google Scholar
  21. 21.
    Byrne, F.P., Jin, S., Paggiola, G., Petchey, T.H.M., Clark, J.H., Farmer, T.J., Hunt, A.J., McElroy, C.R., Sherwood, J.: Tools and techniques for solvent selection: green solvent selection guides. Sust. Chem. Proc. 4, 7/1–7/24 (2016)Google Scholar
  22. 22.
    Sathish, M., Silambarasan, S., Madhan, B., Raghava Rao, J.: Exploration of GSK’S solvent selection guide in leather industry: a CSIR–CLRI tool for sustainable leather manufacturing. Green Chem. 18, 5806–5813 (2016)CrossRefGoogle Scholar
  23. 23.
    Skowerski, K., Bialecki, J., Tracz, A., Olszewski, T.K.: An attempt to provide an environmentally friendly solvent selection guide for olefin metathesis. Green Chem. 16, 1125–1130 (2014)CrossRefGoogle Scholar
  24. 24.
    Zhang, S., Ye, L., Zhang, H., Hou, J.: Green-solvent-processable organic solar cells. Mater. Today 19, 533–543 (2016)CrossRefGoogle Scholar
  25. 25.
    Alcazar, L., Blanco, A., Cano, R., Fisher, L., Nau, M., Sidransky, L., Acree Jr., W.E.: Solubility of anthracene in binary propyl acetate + alcohol solvent mixtures at 298.15 K. J. Chem. Eng. Data 53, 201–203 (2008)CrossRefGoogle Scholar
  26. 26.
    Stephens, T.W., Loera, M., Calderas, M., Diaz, R., Montney, N., Acree Jr., W.E., Abraham, M.H.: Determination of Abraham model solute descriptors for benzoin based on measured solubility ratios. Phys. Chem. Liq. 50, 254–265 (2012)CrossRefGoogle Scholar
  27. 27.
    Cargill, R.W.: IUPAC Solubility Data Series. Carbon Monoxide, vol. 43. Pergamon Press, Oxford, UK (1990)Google Scholar
  28. 28.
    Flanagan, K.B., Hoover, K.R., Garza, O., Hizon, A., Soto, T., Villegas, N., Acree Jr., W.E., Abraham, M.H.: Mathematical correlation of 1-chloroanthraquinone solubilities in organic solvents with the Abraham solvation parameter model. Phys. Chem. Liq. 44, 377–386 (2006)CrossRefGoogle Scholar
  29. 29.
    Stovall, D.M., Givens, C., Keown, S., Hoover, K.R., Barnes, R., Harris, C., Lozano, J., Nguyen, M., Rodriguez, E., Acree Jr., W.E., Abraham, M.H.: Solubility of crystalline nonelectrolyte solutes in organic solvents: mathematical correlation of 4-chloro-3-nitrobenzoic acid and 2-chloro-5-nitrobenzoic acid solubilities with the Abraham solvation parameter model. Phys. Chem. Liq. 43, 351–360 (2015)CrossRefGoogle Scholar
  30. 30.
    Bradley, J.-C., Abraham, M.H., Acree Jr., W.E., Lang, A.S.I.D., Beck, S.N., Bulger, D.A., Clark, E.A., Condron, L.N., Costa, S.T., Curtin, E.M., Kurtu, S.B., Mangir, M.I., McBride, M.J.: Determination of Abraham model solute descriptors for the monomeric and dimeric forms of trans-cinnamic acid using measured solubilities from the Open Notebook Science Challenge. Chem. Central J. 9, 1–6 (2015)CrossRefGoogle Scholar
  31. 31.
    Wilson, A., Tian, A., Chou, V., Quay, A.N., Acree Jr., W.E., Abraham, M.H.: Experimental and predicted solubilities of 3,4-dichlorobenzoic acid in select organic solvents and in binary aqueous–ethanol mixtures. Phys. Chem. Liq. 50, 324–335 (2012)CrossRefGoogle Scholar
  32. 32.
    Bowen, K.R., Stephens, T.W., Lu, H., Satish, K., Shan, D., Acree Jr., W.E., Abraham, M.H.: Experimental and predicted solubilities of 3,4-dimethoxybenzoic acid in select organic solvents of varying polarity and hydrogen-bonding character. Eur. Chem. Bull. 2, 577–583 (2013)Google Scholar
  33. 33.
    Ye, S., Saifullah, M., Grubbs, L.M., McMillan-Wiggins, M.C., Acosta, P., Mejorado, D., Flores, I., Acree Jr., W.E., Abraham, M.H.: Determination of the Abraham model solute descriptors for 3,5-dinitro-2-methylbenzoic acid from measured solubility data in organic solvents. Phys. Chem. Liq. 49, 821–829 (2011)CrossRefGoogle Scholar
  34. 34.
    Liu, S., Xu, S., Du, S., Yu, B., Gong, J.: Determination and correlation of solubility and thermodynamic properties of eszopiclone in pure and mixed solvents. J. Mol. Liq. 221, 1035–1044 (2016)CrossRefGoogle Scholar
  35. 35.
    Li, J., Hao, H., Guo, N., Wang, N., Hao, Y., Luan, Y., Chen, K., Huang, X.: Solubility and thermodynamic properties of maltol in different pure solvents. J. Mol. Liq. 243, 313–323 (2017)CrossRefGoogle Scholar
  36. 36.
    Schmidt, A., Grover, D., Zettl, H., Koshevarova, V., Dai, C., Zhang, S., Hart, E., Brumfield, M., De La Rosa, J., Portillo, V., Pugh, A., Sanchez, A., Acree Jr., W.E., Abraham, M.H.: Determination of Abraham model solute descriptors for isophthalic acid from experimental solubility data in organic solvents at 298 K. Phys. Chem. Liq. 54, 747–757 (2016)CrossRefGoogle Scholar
  37. 37.
    Nti-Gyabaah, J., Chiew, Y.C.: Solubility of lovastatin in ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, sec-butyl acetate, isobutyl acetate, tert-butyl acetate, and 2-butanone, between (285 and 313) K. J. Chem. Eng. Data 53, 2060–2065 (2008)CrossRefGoogle Scholar
  38. 38.
    Acree Jr., W.E., Bowen, K.R., Horton, M.Y., Abraham, M.H.: Computation of Abraham model solute descriptors for 3-methyl-4-nitrobenzoic acid from measured solubility data. Phys. Chem. Liq. 55, 482–491 (2017)CrossRefGoogle Scholar
  39. 39.
    Blake-Taylor, B.H., Deleon, V.H., Acree Jr., W.E., Abraham, M.H.: Mathematical correlation of salicylamide solubilities in organic solvents with the Abraham solvation parameter model. Phys. Chem. Liq. 45, 389–398 (2007)CrossRefGoogle Scholar
  40. 40.
    Nti-Gyabaah, J., Chan, V., Chiew, Y.C.: Solubility and limiting activity coefficient of simvastatin in different organic solvents. Fluid Phase Equilib. 280, 35–41 (2009)CrossRefGoogle Scholar
  41. 41.
    Hart, E., Klein, A., Zha, O., Wadawadigi, A., Qian, E., Dunn, S., Herron, J., Kankolongo, K., Ryan, S., Acree, W.E. Jr., Abraham, M.H.: Determination of Abraham model solute descriptors for monomeric 3,4,5-trimethoxybenzoic acid from experimental solubility data in organic solvents measured at 298.2 K. Phys. Chem. Liq. (2017).  https://doi.org/10.1080/00319104.2017.1346097 Google Scholar
  42. 42.
    Hoover, K.R., Stovall, D.M., Pustejovsky, E., Coaxum, R., Pop, K., Acree Jr., W.E., Abraham, M.H.: Solubility of crystalline nonelectrolyte solutes in organic solvents—mathematical correlation of 2-methoxybenzoic acid and 4-methoxybenzoic acid solubilities with the Abraham solvation parameter model. Can. J. Chem. 82, 1353–1360 (2014)CrossRefGoogle Scholar
  43. 43.
    Coaxum, R., Hoover, K.R., Pustejovsky, E., Stovall, D.M., Acree Jr., W.E., Abraham, M.H.: Thermochemical behavior of dissolved carboxylic acid solutes: Part 3—Mathematical correlation of 2-methylbenzoic acid solubilities with the Abraham solvation parameter model. Phys. Chem. Liq. 42, 313–322 (2004)CrossRefGoogle Scholar
  44. 44.
    Fletcher, K.A., Hernandez, C.E., Roy, L.E., Coym, K.S., Acree Jr., W.E.: Solubility of diphenyl sulfone in organic nonelectrolyte solvents. Comparison of observed versus predicted values based upon the general solvation model. Can. J. Chem. 77, 1214–1217 (1999)CrossRefGoogle Scholar
  45. 45.
    Daniels, C.R., Charlton, A.K., Wold, R.M., Acree Jr., W.E., Abraham, M.H.: Thermochemical behavior of dissolved carboxylic acid solutes: solubilities of 3-methylbenzoic acid and 4-chlorobenzoic acid in organic solvents. Can. J. Chem. 81, 1492–1501 (2003)CrossRefGoogle Scholar
  46. 46.
    Acree Jr., W.E., Abraham, M.H.: Solubility of crystalline nonelectrolyte solutes in organic solvents: mathematical correlation of benzil solubilities with the Abraham general solvation model. J. Solution Chem. 31, 293–303 (2002)CrossRefGoogle Scholar
  47. 47.
    De Fina, K.M., Sharp, K.M., Acree Jr., W.E.: Solubility of biphenyl in organic nonelectrolyte solvents. Comparison of observed versus predicted values based upon mobile order theory. Can. J. Chem. 77, 1589–1593 (1999)CrossRefGoogle Scholar
  48. 48.
    Hoover, K.R., Coaxum, R., Pustejovsky, E., Acree Jr., W.E., Abraham, M.H.: Thermochemical behavior of dissolved carboxylic acid solutes: part 5-mathematical correlation of 3,5-dinitrobenzoic acid solubilities with the Abraham solvation parameter model. Phys. Chem. Liq. 42, 457–466 (2004)CrossRefGoogle Scholar
  49. 49.
    Stovall, D.M., Acree Jr., W.E., Abraham, M.H.: Solubility of 9-fluorenone, thianthrene and xanthene in organic solvents. Fluid Phase Equilibr. 232, 113–121 (2005)CrossRefGoogle Scholar
  50. 50.
    Charlton, A.K., Daniels, C.R., Wold, R., Pustejovsky, E., Acree Jr., W.E., Abraham, M.H.: Solubility of crystalline nonelectrolyte solutes in organic solvents: mathematical correlation of 3-nitrobenzoic acid solubilities with the Abraham general solvation model. J. Mol. Liq. 116, 19–28 (2004)CrossRefGoogle Scholar
  51. 51.
    Hoover, K.R., Coaxum, R., Pustejovsky, E., Stovall, D.M., Acree Jr., W.E., Abraham, M.H.: Thermochemical behavior of dissolved carboxylic acid solutes: part 4—mathematical correlation of 4-nitrobenzoic acid solubilities with the Abraham solvation parameter model. Phys. Chem. Liq. 42, 339–347 (2004)CrossRefGoogle Scholar
  52. 52.
    Hoover, K.R., Acree Jr., W.E., Abraham, M.H.: Mathematical correlation of phenothiazine solubilities in organic solvents with the Abraham solvation parameter model. Phys. Chem. Liq. 44, 367–376 (2006)CrossRefGoogle Scholar
  53. 53.
    Abraham, M.H., Acree Jr., W.E.: Descriptors for the prediction of partition coefficients and solubilities of organophosphorus compounds. Sep. Sci. Technol. 48, 884–897 (2013)CrossRefGoogle Scholar
  54. 54.
    Abraham, M.H., Acree Jr., W.E.: Descriptors for the prediction of partition coefficients of 8-hydroxyquinoline and its derivatives. Sep. Sci. Technol. 49, 2135–2141 (2014)CrossRefGoogle Scholar
  55. 55.
    Abraham, M.H., Smith, R.E., Luchtefeld, R., Boorem, A.J., Luo, R., Acree Jr., W.E.: Prediction of solubility of drugs and other compounds in organic solvents. J. Pharm. Sci. 99, 1500–1515 (2010)CrossRefGoogle Scholar
  56. 56.
    Abraham, M.H., Acree Jr., W.E.: Descriptors for ferrocene and some substituted ferrocenes. J. Mol. Liq. 232, 325–331 (2017)CrossRefGoogle Scholar
  57. 57.
    Abraham, M.H., Ibrahim, A., Acree Jr., W.E.: Air to muscle and blood/plasma to muscle distribution of volatile organic compounds and drugs: linear free energy analyses. Chem. Res. Toxicol. 19, 801–808 (2006)CrossRefGoogle Scholar
  58. 58.
    Abraham, M.H., Ibrahim, A., Acree Jr., W.E.: Air to brain, blood to brain and plasma to brain distribution of volatile organic compounds: linear free energy analyses. Eur. J. Med. Chem. 41, 494–502 (2006)CrossRefGoogle Scholar
  59. 59.
    Abraham, M.H., Ibrahim, A., Acree Jr., W.E.: Air to liver partition coefficients for volatile organic compounds and blood to liver partition coefficients for volatile organic compounds and drugs. Eur. J. Med. Chem. 42, 743–751 (2007)CrossRefGoogle Scholar
  60. 60.
    Abraham, M.H., Ibrahim, A., Acree Jr., W.E.: Air to lung partition coefficients for volatile organic compounds and blood to lung partition coefficients for volatile organic compounds and drugs. Eur. J. Med. Chem. 43, 478–485 (2008)CrossRefGoogle Scholar
  61. 61.
    Abraham, M.H., Gola, J.M.R., Ibrahim, A., Acree Jr., W.E., Liu, X.: A simple method for estimating in vitro air–tissue and in vivo blood–tissue partition coefficients. Chemosphere 120, 188–191 (2015)CrossRefGoogle Scholar
  62. 62.
    Schmidt, A., Zad, M., Acree Jr., W.E., Abraham, M.H.: Development of Abraham model correlations for predicting enthalpies of solvation of nonionic solutes dissolved in formamide. Phys. Chem. Liq. 54, 313–324 (2016)CrossRefGoogle Scholar
  63. 63.
    Hart, E., Grover, D., Zettl, H., Koshevarova, V., Acree Jr., W.E., Abraham, M.H.: Development of Abraham model expressions for predicting the enthalpies of solvation of solutes dissolved in acetic acid. Phys. Chem. Liq. 54, 141–154 (2016)CrossRefGoogle Scholar
  64. 64.
    Varfolomeev, M.A., Rakipov, I.T., Khachatrian, A.A., Acree Jr., W.E., Brumfield, M., Abraham, M.H.: Effect of halogen substitution on the enthalpies of solvation and hydrogen bonding of organic solutes in chlorobenzene and 1,2-dichlorobenzene derived using multi-parameter correlations. Thermochim. Acta 617, 8–20 (2015)CrossRefGoogle Scholar
  65. 65.
    Hoover, K.R., Acree Jr., W.E., Abraham, M.H.: Chemical toxicity correlations for several fish species based on the Abraham solvation parameter model. Chem. Res. Toxicol. 18, 1497–1505 (2005)CrossRefGoogle Scholar
  66. 66.
    Hoover, K.R., Flanagan, K.B., Acree Jr., W.E., Abraham, M.H.: Chemical toxicity correlations for several protozoas, bacteria, and water fleas based on the Abraham solvation parameter model. J. Environ. Eng. Sci. 6, 165–174 (2007)CrossRefGoogle Scholar
  67. 67.
    Bowen, K.R., Flanagan, K.B., Acree Jr., W.E., Abraham, M.H., Rafols, C.: Correlation of the toxicity of organic compounds to tadpoles using the Abraham model. Sci. Total Environ. 371, 99–109 (2006)CrossRefGoogle Scholar
  68. 68.
    Abraham, M.H., Hassanisadi, M., Jalali-Heravi, M., Ghafourian, T., Cain, W.S., Cometto-Muniz, J.E.: Draize rabbit eye test compatibility with eye irritation thresholds in humans: A quantitative structure–activity relationship analysis. Toxicol. Sci. 76, 384–391 (2003)CrossRefGoogle Scholar
  69. 69.
    Abraham, M.H., Sanchez-Moreno, R., Cometto-Muniz, J.E., Cain, W.S.: A quantitative structure–activity analysis on the relative sensitivity of the olfactory and the nasal trigeminal chemosensory systems. Chem. Senses 32, 711–719 (2007)CrossRefGoogle Scholar
  70. 70.
    Zhang, K., Abraham, M.H., Liu, X.: An equation for the prediction of human skin permeability of neutral molecules, ions and ionic species. Int. J. Pharm. 521, 259–266 (2017)CrossRefGoogle Scholar
  71. 71.
    Abraham, M.H., Acree Jr., W.E.: Physicochemical and biochemical properties for the dialkyl phthalates. Chemosphere 119, 871–880 (2015)CrossRefGoogle Scholar
  72. 72.
    Abraham, M.H., Gola, J.R.M., Gil-Lostes, J., Acree Jr., W.E., Cometto-Muniz, J.E.: Determination of solvation descriptors for terpene hydrocarbons from chromatographic measurements. J. Chromatogr. A 1293, 133–141 (2013)CrossRefGoogle Scholar
  73. 73.
    Zhu, M., Zhang, H., Zhang, K., Yang, Y., Jiang, S., Xu, S., Liu, Y., Gong, J.: Measurement and correlation of solubility of boscalid with thermodynamic analysis in pure and binary solvents from 288.15 K to 313.15 K. J. Chem. Thermodyn. 112, 178–187 (2017)CrossRefGoogle Scholar
  74. 74.
    Zayats, M.F., Leschev, S.M., Petrashkevich, N.V., Zayats, M.A., Kadenczki, L., Szitas, R., Dobrik, H.S., Kereszteny, N.: Distribution of pesticides in n-hexane/water and n-hexane/acetonitrile systems and estimation of possibilities of their extraction isolation and preconcentration from various matrices. Anal. Chim. Acta 774, 33–43 (2013)CrossRefGoogle Scholar
  75. 75.
    Absolv. ADME Suite 5.0, Advanced Chemistry Development, 110 Yonge Street, 14th Floor, Toronto, Ontario, M5C 1T4, CanadaGoogle Scholar
  76. 76.
    Naef, R.A.: generally applicable computer algorithm based on the group additivity method for the calculation of seven molecular descriptors: heat of combustion, logPo/w, logS, refractivity, polarizability, toxicity and logBB of organic compounds; scope and limits of applicability. Molecules 20, 18279–18351 (2015)CrossRefGoogle Scholar
  77. 77.
    Advanced Chemistry Development, 110 Yonge St., 14th Floor, Toronto, Ontario M5C 1T4, Canada. The ACD Freeware can be accessed at http://www.acdlabs.com/. Accessed July 7 2017
  78. 78.
    Abraham, M.H., McGowan, J.C.: The use of characteristic volumes to measure cavity terms in reversed phase liquid chromatography. Chromatographia 23, 243–246 (1987)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Igor A. Sedov
    • 1
  • Timur M. Salikov
    • 1
  • Diliara R. Khaibrakhmanova
    • 1
  • Anisha Wadawadigi
    • 2
  • Olivia Zha
    • 2
  • Ellen Qian
    • 2
  • Erin Hart
    • 2
  • Maribel Barrera
    • 2
  • William E. AcreeJr.
    • 2
  • Michael H. Abraham
    • 3
  1. 1.Department of ChemistryKazan Federal UniversityKazanRussia
  2. 2.Department of ChemistryUniversity of North TexasDentonUSA
  3. 3.Department of ChemistryUniversity College LondonLondonUK

Personalised recommendations