Liquid–Liquid Equilibrium of Water + 1-Propanol or 1-Butanol + Dibutyl Ether Ternary Systems: Measurements and Correlation at Three Temperatures
Article
First Online:
Received:
Accepted:
- 40 Downloads
Abstract
Liquid–liquid equilibrium (LLE) date for the ternary systems of {water + 1-propanol + dibutyl ether (DBE)} and (water + 1-butanol + DBE) were determined at T = (293.15, 303.15, 308.15) K under atmospheric pressure. Distribution coefficients and separation factors of 1-propanol in the mixtures were calculated and are discussed. The influence of temperature on the liquid phase regions was analyzed. In addition, the experimental values were correlated well with the modified and extended UNIQUAC models; the modified UNIQUAC model represents the data better than the extended UNIQUAC model.
Keywords
Liquid–liquid equilibrium Dibutyl ether Modified UNIQUAC model Extended UNIQUAC modelReferences
- 1.Tynjälä, P., Pakkanen, T.T., Mustamäki, S.: Modification of ZSM-5 zeolite with trimethyl phosphite. 2. Catalytic properties in the conversion of C1–C4 alcohols. J. Phys. Chem. B 102, 5280–5286 (1998)CrossRefGoogle Scholar
- 2.Demirel, Y.: Estimation of the entropy of vaporization at the normal boiling point for azeotropic mixtures containing water, alcohol or acetic acid. Thermochim. Acta 339, 79–85 (1999)CrossRefGoogle Scholar
- 3.Cháfer, A., de la Torre, J., Lladosa, E., Montón, J.B.: Liquid–liquid equilibria of 4-methyl-2-pentanone + 1-propanol or 2-propanol + water ternary systems: measurements and correlation at different temperatures. Fluid Phase Equilib. 361, 23–29 (2014)CrossRefGoogle Scholar
- 4.Çehreli, S., Özmen, D., Dramur, U.: (Liquid + liquid) equilibria of (water + 1-propanol + solvent) at T = 298.2 K. Fluid Phase Equilib. 239, 156–160 (2006)CrossRefGoogle Scholar
- 5.Ghanadzadeh, H., Ghanadzadeh, A., Bahrpaima, K.: Measurement and prediction of tie-line data for mixtures of (water + 1-propanol + diisopropyl ether): LLE diagrams as a function of temperature. Fluid Phase Equilib. 277, 126–130 (2009)CrossRefGoogle Scholar
- 6.Merzougui, A., Hasseine, A., Kabouche, A., Korichi, M.: LLE for the extraction of alcohol from aqueous solutions with diethyl ether and dichloromethane at 293.15 K, parameter estimation using a hybrid genetic based approach. Fluid Phase Equilib. 309, 161–167 (2011)CrossRefGoogle Scholar
- 7.Wypych, G.: Handbook of Solvents. ChemTec Publishing, Toronto (2001)Google Scholar
- 8.Wang, C., Guo, J., Cheng, K., Chen, Y.: Ternary (liquid + liquid) equilibria for the extraction of ethanol, or 2-propanol from aqueous solutions with 1,1′-oxybis (butane) at different temperatures. J. Chem. Thermodyn. 94, 119–126 (2016)CrossRefGoogle Scholar
- 9.Park, S.J., Hwang, I.C., Kwak, H.Y.: Binary liquid–liquid equilibrium (LLE) for dibutyl ether (DBE) + water from (288.15 to 318.15) K and ternary LLE for systems of DBE + C1–C4 alcohols + water at 298.15 K. J. Chem. Eng. Data 53, 2089–2094 (2008)CrossRefGoogle Scholar
- 10.Arce, A., Rodríguez, H., Rodríguez, O., Soto, A.: (Liquid + liquid) equilibrium of (dibutyl ether + methanol + water) at different temperatures. J. Chem. Thermodyn. 37, 1007–1012 (2005)CrossRefGoogle Scholar
- 11.Tamura, K., Chen, Y., Tada, K., Yamada, T., Nagata, I.: Representation of multicomponent liquid–liquid equilibria for aqueous and organic solutions using a modified UNIQUAC model. J. Solution Chem. 29, 463–488 (2000)CrossRefGoogle Scholar
- 12.Nagata, I.: Modification of the extended UNIQUAC model for correlating quaternary liquid–liquid equilibria data. Fluid Phase Equilib. 54, 191–206 (1990)CrossRefGoogle Scholar
- 13.Barton, A.F.M. (ed): IUPAC Solubility Data Series, Vol. 15. Alcohols with Water. Pergamon Press (1984) https://srdata.nist.gov/solubility/ Accessed March 8, 2018
- 14.Stephenson, R., Stuart, J.: Mutual binary solubilities: water–alcohols and water–esters. J. Chem. Eng. Data 31, 56–70 (1986)CrossRefGoogle Scholar
- 15.Pirahmadi, F., Dehghani, M.R., Behzadi, B.: Experimental and theoretical study on liquid–liquid equilibrium of 1-butanol + water + NH4Cl at 298.15, 308.15 and 318.15 K. Fluid Phase Equilib. 325, 1–5 (2012)CrossRefGoogle Scholar
- 16.Sørensen, J.M., Arlt, W.: Liquid–liquid equilibrium data collection. Vol. V, Part 1. DECHEMA, Frankfurt/Main (1980)Google Scholar
- 17.Prausnitz, J.M., Anderson, T.F., Grens, E.A., Eckert, C.A., Hsieh, R., O’Connell, J.P.: Computer Calculations for Multicomponent Vapor-Liquid and Liquid–Liquid Equilibria. Prentice Hall, Englewood Cliffs (1980)Google Scholar
- 18.Orchillés, A.V., Miguel, P.J., Vercher, E., Martínez-Andreu, A.: Isobaric vapor–liquid equilibria for methyl acetate + methanol + 1-ethyl-3-methylimidazolium trifluoromethanesulfonate at 100 kPa. J. Chem. Eng. Data 52, 915–920 (2007)CrossRefGoogle Scholar
- 19.Lepori, L., Matteoli, E., Bernazzani, L., Ceccanti, N., Conti, G., Gianni, P., Mollica, V., Tinè, M.R.: Isothermal vapour/liquid equilibria of binary mixtures with dibutyl ether at 298.15 K. Phys. Chem. Chem. Phys. 2, 4837–4842 (2000)CrossRefGoogle Scholar
- 20.Chen, Y., Wang, H., Tang, Y.Y., Zeng, J.: Ternary (liquid + liquid) equilibria for (water + 2-propanol + α-pinene, or β-pinene) mixtures at four temperatures. J. Chem. Thermodyn. 51, 144–149 (2012)CrossRefGoogle Scholar
- 21.Nelder, J.A., Mead, R.A.: simplex method for function minimization. Comput. J. 7, 308–313 (1965)CrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC, part of Springer Nature 2018