Journal of Solution Chemistry

, Volume 47, Issue 3, pp 409–429 | Cite as

Investigation of 3D Contour Map and Intermolecular Interaction of Dopamine with β-Cyclodextrin and 2-Hydroxypropyl-β-cyclodextrin

  • A. Antony Muthu Prabhu
  • Madi Fatiha
  • Nouar Leila
  • T. Anantha Raj
  • Inmaculada Navarro-González
  • Maria Jesús Periago
  • Maria Josefa Yáñez-Gascón
  • Horacio Pérez-Sánchez


The interactions of the neurotransmitter dopamine (DA) with β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) was characterized using UV–visible, 2D fluorescence, 3D fluorescence, FT–IR, PXRD and SEM techniques. PM3, PM7 and DFT methods were used to optimize the structures of the inclusion complexes in the gas phase. The absorbance and fluorescence intensities of DA increased in the presence of CDs in aqueous solution. The binding energy, HOMO–LUMO energy gap and Mulliken atomic charges were computed for the inclusion complexes. NBO analysis revealed a greater number of intermolecular hydrogen bonds in DA:HP-β-CD. Experimental and theoretical results suggested that the DA molecule is deeply embedded in the cavities of both CDs.


Dopamine β-CD HP-β-CD Inclusion complex 2D 3D contour map NBO 



The author A. Antony Muthu Prabhu is thankful to Dr. E. Subramanian, Head of the Department of Chemistry, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu for providing the instrumental facilities. This work was partially supported by the Fundación Séneca del Centro de Coordinación de la Investigación de la Región de Murcia under Project 18946/JLI/13.

Supplementary material

10953_2018_728_MOESM1_ESM.docx (632 kb)
Supplementary material 1 (DOCX 631 kb)


  1. 1.
    Damier, P., Hirsch, E.C., Agid, Y., Graybiel, A.M.: The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122, 1437–1448 (1999)CrossRefGoogle Scholar
  2. 2.
    Heinz, A., Przuntek, H., Winterer, G., Pietzcker, A.: Clinical aspects and follow-up of dopamine-induced psychoses in continuous dopaminergic therapy and their implications for the dopamine hypothesis of schizophrenic symptoms. Nervenarzt. 66, 662–669 (1995)Google Scholar
  3. 3.
    Shankaran, D.R., Limura, K., Kato, T.: Simultaneous determination of ascorbic acid and dopamine at a sol–gel composite electrode. Sens. Actuators B Chem. 94, 73–80 (2003)CrossRefGoogle Scholar
  4. 4.
    Mo, J.W., Ororeve, B.: Simultaneous measurement of dopamine and ascorbate at their physiological levels using voltammetric microprobe based on overoxidized poly(1,2-phenylenediamine)-coated carbon fiber. Anal. Chem. 73, 1196–1202 (2001)CrossRefGoogle Scholar
  5. 5.
    Salem, L.B., Bosquillon, C., Dailey, L.A., Delattre, L., Martin, G.P., Evrard, B., Forbes, B.: Sparing methylation of β-cyclodextrin mitigates cytotoxicity and permeability induction in respiratory epithelial cell layers in vitro. J. Control. Release 136, 110–116 (2009)CrossRefGoogle Scholar
  6. 6.
    Venkatesh, G., Thulasidhasan, J., Rajendiran, N.: A spectroscopic and molecular modeling studies of the inclusion complexes of orciprenaline and terbutaline drugs with native and modified cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 78, 225–237 (2014)CrossRefGoogle Scholar
  7. 7.
    Crupi, V., Guella, G., Majolino, D., Mancini, I., Rossi, B., Stancanelli, R., Venuti, V., Verrocchio, P., Viliani, G.: T-dependence of the vibrational dynamics of IBP/diME-β-CD in solid state: A FT–IR spectral and quantum chemical study. J. Mol. Struct. 972, 75–80 (2010)CrossRefGoogle Scholar
  8. 8.
    Szejtli, J.: Cyclodextrine and Their Inclusion Complex, vol. 10, p. 159. Akade´miai Kiado, Budapest (1981)Google Scholar
  9. 9.
    Maestrelli, F., Cecchi, M., Cirri, M., Capasso, G., Mennimi, N., Mura, P.: Comparative study of oxaprozin complexation with natural and chemically-modified cyclodextrins in solution and in the solid state. J. Incl. Phenom. Macrocycl. Chem. 63, 17–25 (2009)CrossRefGoogle Scholar
  10. 10.
    Viernstein, H., Weiss-Greiler, P., Wolschann, P.: Solubility enhancement of low soluble biologically active compounds by β-cyclodextrin and dimethyl-β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 44, 235–239 (2002)CrossRefGoogle Scholar
  11. 11.
    Cao, Y., Xiao, X., Lu, R., Guo, Q.: Theoretical study of the inclusion processes of Ibuprofen enantiomers with native and modified β-CDs. J. Inclu. Phenom. Macrocycl. Chem. 46, 195–200 (2003)CrossRefGoogle Scholar
  12. 12.
    Luo, X., Chen, Y., Gastpard Huber, J., Zhang, Y., Sinay, P.: Diisobutylaluminum hydride as a molecular scalpel: the regioselective stripping of four methyl groups from permethylated β-cyclodextrin. C.R. Chimie 7, 25–28 (2004)Google Scholar
  13. 13.
    Hamai, S.: Hydrogen bonding in inclusion complexes of heptakis(2,3,6-tri-o-methyl)-β-cyclodextrin with chlorophenols in organic solvents. Bull. Chem. Soc. Jpn. 65, 2323–2327 (1992)CrossRefGoogle Scholar
  14. 14.
    Eid, E.E.M., Abdul, A.B., Suliman, F.E.O., Sukari, M.A., Rasedee, A., Fatah, S.S.: Characterization of the inclusion complex of zerumbone with hydroxypropyl-β-cyclodextrin. Carbohyd. Polym. 83, 1707–1714 (2011)CrossRefGoogle Scholar
  15. 15.
    Zhang, P., Pan, C., Tang, K., Li, H.: Inclusion behavior of oxybutynin with hydroxypropyl-β-cyclodextrin. J. Central South Univ. Technol. 18, 1897–1901 (2011)CrossRefGoogle Scholar
  16. 16.
    Li, J., Zhang, S., Zhou, Y., Guan, S., Zhang, L.: Inclusion complexes of fluconazole with β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin in aqueous solution: preparation, characterization and a structural insight. J. Incl. Phenom. Macrocycl. Chem. 84, 209–217 (2016)CrossRefGoogle Scholar
  17. 17.
    Bulani, V.D., Kothavade, P.S., Nagmoti, D.M., Kundaikar, H.S., Degani, M.S., Juvekar, A.R.: Characterisation and anti-inflammatory evaluation of the inclusion complex of ellagic acid with hydroxypropyl-β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 82, 361–372 (2015)CrossRefGoogle Scholar
  18. 18.
    Li, S., Yue, J., Zhou, W., Li, L.: An investigation into the preparation, characterization and antioxidant activity of puerarin/cyclodextrin inclusion complexes. J. Incl. Phenom. Macrocycl. Chem. 82, 453–460 (2015)CrossRefGoogle Scholar
  19. 19.
    Buschmann, H., Schollmeyer, E.: Applications of cyclodextrins in cosmetic products: a review. J. Cosmet. Sci. 53, 185–191 (2002)Google Scholar
  20. 20.
    Loftsson, T., Duchêne, D.: Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 329, 1–11 (2007)CrossRefGoogle Scholar
  21. 21.
    Morin-Crini, N., Crini, G.: Environmental applications of water-insoluble β-cyclodextrin–epichlorohydrin polymers. Prog. Polymer Sci. 38, 344–368 (2013)CrossRefGoogle Scholar
  22. 22.
    Singh, M., Sharma, R., Banerjee, U.C.: Biotechnological applications of cyclodextrins. Biotech. Adv. 20, 341–359 (2002)CrossRefGoogle Scholar
  23. 23.
    Szente, L., Szejtli, J.: Cyclodextrins as food ingredients. Trends Food Sci. Technol. 15, 137–142 (2004)CrossRefGoogle Scholar
  24. 24.
    Cheng, X., Wang, Q., Lu, C.S., Meng, Q.: Watching the conformational changes of maleonitriledithiolate chromophores inside the inclusion complexes with cyclodextrins: probed by ICD spectra and DFT calculations. J. Phys. Chem. A 114, 7230–7240 (2010)CrossRefGoogle Scholar
  25. 25.
    Gotsev, M.G., Ivanov, P.M.: Molecular dynamics of large-ring cyclodextrins: principal component analysis of the conformational interconversions. J. Phys. Chem. B 113, 5752–5759 (2009)CrossRefGoogle Scholar
  26. 26.
    Nagaraju, M., Sastry, G.N.: Theoretical studies on inclusion complexes of cyclodextrins. J. Phys. Chem. A 113, 9533–9542 (2009)CrossRefGoogle Scholar
  27. 27.
    Prabhu, A.A.M., Sankaranarayanan, R.K., Venkatesh, G., Rajendiran, N.: Dual fluorescence of Fast Blue RR and Fast Violet B: effects of solvents and cyclodextrin complexation. J. Phys. Chem. B 116, 9061–9074 (2012)CrossRefGoogle Scholar
  28. 28.
    Prabhu, A.A.M., Subramanian, V.K., Rajendiran, N.: Excimer formation in inclusion complexes of β-cyclodextrin with salbutamol, sotalol and atenolol: Spectral and molecular modeling studies. Spectrochim. Acta 96A, 95–107 (2012)CrossRefGoogle Scholar
  29. 29.
    Anconi, C.P.A., Nascimento Jr., C.S., Fedoce-Lopes, J., Santos, H.F.D., Almeida, W.B.D.: Ab initio calculations on low-energy conformers of α-cyclodextrin. J. Phys. Chem. A 111, 12127–12135 (2007)CrossRefGoogle Scholar
  30. 30.
    Fatiha, M., Leila, L., Leila, N., Eddine, K.D.: Theoretical study of the inclusion processes of ethyl p-hydroxybenzoate with β-cyclodextrin: PM3MM and ONIOM2 calculations. J. Taiwan Inst. Chem. Eng. 43, 868–872 (2012)CrossRefGoogle Scholar
  31. 31.
    Fatiha, M., Khatmi, D., Dhaoui, N., Bouzitouna, A., Abdaoui, M., Boucekkine, A.: Molecular model of CENS piperidine β-CD inclusion complex: DFT study. C.R. Chimie. 12, 1305–1312 (2009)Google Scholar
  32. 32.
    Li, W., Lu, B.T., Sheng, A.G., Yang, F., Wang, Z.D.: Spectroscopic and theoretical study on inclusion complexation of beta-cyclodextrin with permethrin. J. Mol. Struct. 981, 194–203 (2010)CrossRefGoogle Scholar
  33. 33.
    Cui, H., Wu, L., Chen, J., Lin, X.: Multi-mode in situ spectroelectrochemical studies of redox pathways of adrenaline. J. Electroanal. Chem. 504, 195–200 (2001)CrossRefGoogle Scholar
  34. 34.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, E.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J., Gaussian 09 ed., Gaussian, Inc.: Wallingford CT (2009)Google Scholar
  35. 35.
    Glendening, E.D., Reed, A.E, Carpenter, J.E., Weinhold, F.: NBO Version 3.1, TCI, University of Wisconsin, Madison (1998)Google Scholar
  36. 36.
    Prabhu, A.A.M., Suresh Kumar, G.S.: Inclusion complexation of phenoxyaliphatic acid derivatives of 3,3′-bis(indolyl)methanes with β-cyclodextrin. J. Fluoresc. 24, 925–931 (2014)CrossRefGoogle Scholar
  37. 37.
    Corona-Avendano, S., Alarcon-Angeles, G., Rosquete-Pina, G.A., Rojas-Hernandez, A., Gutierrez, A., Ramirez-Silva, M.T., Romero-Romo, M., Palomar-Pardave, M.: New insights on the nature of the chemical species involved during the process of dopamine deprotonation in aqueous solution: theoretical and experimental study. J. Phys. Chem. B 111, 1640–1647 (2007)CrossRefGoogle Scholar
  38. 38.
    Palomar-Pardave, M., Alarcon-Angeles, G., Ramirez-Silva, M.T., Romero-Romo, M., Rojas-Hernandez, A., Corona-Avendano, S.: Electrochemical and spectrophotometric determination of the formation constants of the ascorbic acid-β-cyclodextrin and dopamine-β-cyclodextrin inclusion complexes. J. Incl. Phenom. Macrocycl. Chem. 69, 91–99 (2011)CrossRefGoogle Scholar
  39. 39.
    Benesi, A., Hildebrand, J.H.: A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 71, 2703–2707 (1949)CrossRefGoogle Scholar
  40. 40.
    Chen, H., Ji, H.: Effect of substitution degree of 2-hydroxypropyl-β-cyclodextrin on the alkaline hydrolysis of cinnamaldehyde to benzaldehyde. Supramol. Chem. 26, 796–803 (2014)CrossRefGoogle Scholar
  41. 41.
    Ilanchelian, M., Raj, C.R., Ramaraj, R.: Spectral studies on the cyclodextrin inclusion complexes of Toluidine Blue O and Meldola’s Blue in aqueous solution. J. Incl. Phenom. Macro. Chem. 36, 9–20 (2000)CrossRefGoogle Scholar
  42. 42.
    Jude Jenita, M., Venkatesh, G., Subramanian, V.K., Rajendiran, N.: Excimer formation in inclusion complexes of antihypertensive drugs with HP-α- and HP-β-cyclodextrins. Ind. J. Chem. 52A, 207–216 (2013)Google Scholar
  43. 43.
    Yuana, C., Liu, B., Liu, H.: Characterization of hydroxypropyl-β-cyclodextrins with different substitution patterns via FTIR, GC–MS, and TG–DTA. Carbohydr. Polym. 118, 36–40 (2015)CrossRefGoogle Scholar
  44. 44.
    Veiga, M.D., Ahsan, F.: Study of tolbutamide-hydroxypropyl-γ-cyclodextrin interaction in solution and solid state. Chem. Pharm. Bull. 48, 793–797 (2000)CrossRefGoogle Scholar
  45. 45.
    Fernandes, C.M., Vieira, M.T., Veiga, F.J.B.: Physicochemical characterization and in vitro dissolution behavior of nicardipine-cyclodextrins inclusion compounds. Eur. J. Pharm. Sci. 15, 79–88 (2002)CrossRefGoogle Scholar
  46. 46.
    Prabhu, A.A.M., Suresh Kumar, G.S., Fatiha, M., Sorimuthu, S., Sundar Raj, M.: Encapsulation of phenylalanine and 3,4-dihydroxyphenylalanine into β-cyclodextrin: Spectral and molecular modeling studies. J. Mol. Struct. 1079, 370–382 (2015)CrossRefGoogle Scholar
  47. 47.
    Yan, C., Xiu, Z., Li, X., Hao, C.: Molecular modeling study of β-cyclodextrin complexes with (+)-catechin and (−)-epicatechin. J. Mol. Graph. Model. 26, 420–428 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. Antony Muthu Prabhu
    • 1
  • Madi Fatiha
    • 2
  • Nouar Leila
    • 2
  • T. Anantha Raj
    • 1
  • Inmaculada Navarro-González
    • 3
  • Maria Jesús Periago
    • 3
  • Maria Josefa Yáñez-Gascón
    • 4
  • Horacio Pérez-Sánchez
    • 5
  1. 1.Department of ChemistryManonmaniam Sundaranar UniversityTirunelveliIndia
  2. 2.Laboratory of Computational Chemistry and Nanostructures, Department of Material Sciences, Faculty of Mathematical, Informatics and Material SciencesUniversity of 08 Mai 1945GuelmaAlgeria
  3. 3.Department of Food Science and Nutrition, Faculty of Veterinary ScienceUniversity of MurciaMurciaSpain
  4. 4.Electron Microscopy ServiceUniversidad Católica San Antonio de Murcia (UCAM)GuadalupeSpain
  5. 5.Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Science DepartmentUniversidad Católica San Antonio de Murcia (UCAM)GuadalupeSpain

Personalised recommendations