Skip to main content
Log in

Investigation of 3D Contour Map and Intermolecular Interaction of Dopamine with β-Cyclodextrin and 2-Hydroxypropyl-β-cyclodextrin

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The interactions of the neurotransmitter dopamine (DA) with β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) was characterized using UV–visible, 2D fluorescence, 3D fluorescence, FT–IR, PXRD and SEM techniques. PM3, PM7 and DFT methods were used to optimize the structures of the inclusion complexes in the gas phase. The absorbance and fluorescence intensities of DA increased in the presence of CDs in aqueous solution. The binding energy, HOMO–LUMO energy gap and Mulliken atomic charges were computed for the inclusion complexes. NBO analysis revealed a greater number of intermolecular hydrogen bonds in DA:HP-β-CD. Experimental and theoretical results suggested that the DA molecule is deeply embedded in the cavities of both CDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Damier, P., Hirsch, E.C., Agid, Y., Graybiel, A.M.: The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122, 1437–1448 (1999)

    Article  Google Scholar 

  2. Heinz, A., Przuntek, H., Winterer, G., Pietzcker, A.: Clinical aspects and follow-up of dopamine-induced psychoses in continuous dopaminergic therapy and their implications for the dopamine hypothesis of schizophrenic symptoms. Nervenarzt. 66, 662–669 (1995)

    CAS  Google Scholar 

  3. Shankaran, D.R., Limura, K., Kato, T.: Simultaneous determination of ascorbic acid and dopamine at a sol–gel composite electrode. Sens. Actuators B Chem. 94, 73–80 (2003)

    Article  Google Scholar 

  4. Mo, J.W., Ororeve, B.: Simultaneous measurement of dopamine and ascorbate at their physiological levels using voltammetric microprobe based on overoxidized poly(1,2-phenylenediamine)-coated carbon fiber. Anal. Chem. 73, 1196–1202 (2001)

    Article  CAS  Google Scholar 

  5. Salem, L.B., Bosquillon, C., Dailey, L.A., Delattre, L., Martin, G.P., Evrard, B., Forbes, B.: Sparing methylation of β-cyclodextrin mitigates cytotoxicity and permeability induction in respiratory epithelial cell layers in vitro. J. Control. Release 136, 110–116 (2009)

    Article  CAS  Google Scholar 

  6. Venkatesh, G., Thulasidhasan, J., Rajendiran, N.: A spectroscopic and molecular modeling studies of the inclusion complexes of orciprenaline and terbutaline drugs with native and modified cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 78, 225–237 (2014)

    Article  CAS  Google Scholar 

  7. Crupi, V., Guella, G., Majolino, D., Mancini, I., Rossi, B., Stancanelli, R., Venuti, V., Verrocchio, P., Viliani, G.: T-dependence of the vibrational dynamics of IBP/diME-β-CD in solid state: A FT–IR spectral and quantum chemical study. J. Mol. Struct. 972, 75–80 (2010)

    Article  CAS  Google Scholar 

  8. Szejtli, J.: Cyclodextrine and Their Inclusion Complex, vol. 10, p. 159. Akade´miai Kiado, Budapest (1981)

  9. Maestrelli, F., Cecchi, M., Cirri, M., Capasso, G., Mennimi, N., Mura, P.: Comparative study of oxaprozin complexation with natural and chemically-modified cyclodextrins in solution and in the solid state. J. Incl. Phenom. Macrocycl. Chem. 63, 17–25 (2009)

    Article  CAS  Google Scholar 

  10. Viernstein, H., Weiss-Greiler, P., Wolschann, P.: Solubility enhancement of low soluble biologically active compounds by β-cyclodextrin and dimethyl-β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 44, 235–239 (2002)

    Article  CAS  Google Scholar 

  11. Cao, Y., Xiao, X., Lu, R., Guo, Q.: Theoretical study of the inclusion processes of Ibuprofen enantiomers with native and modified β-CDs. J. Inclu. Phenom. Macrocycl. Chem. 46, 195–200 (2003)

    Article  CAS  Google Scholar 

  12. Luo, X., Chen, Y., Gastpard Huber, J., Zhang, Y., Sinay, P.: Diisobutylaluminum hydride as a molecular scalpel: the regioselective stripping of four methyl groups from permethylated β-cyclodextrin. C.R. Chimie 7, 25–28 (2004)

  13. Hamai, S.: Hydrogen bonding in inclusion complexes of heptakis(2,3,6-tri-o-methyl)-β-cyclodextrin with chlorophenols in organic solvents. Bull. Chem. Soc. Jpn. 65, 2323–2327 (1992)

    Article  CAS  Google Scholar 

  14. Eid, E.E.M., Abdul, A.B., Suliman, F.E.O., Sukari, M.A., Rasedee, A., Fatah, S.S.: Characterization of the inclusion complex of zerumbone with hydroxypropyl-β-cyclodextrin. Carbohyd. Polym. 83, 1707–1714 (2011)

    Article  CAS  Google Scholar 

  15. Zhang, P., Pan, C., Tang, K., Li, H.: Inclusion behavior of oxybutynin with hydroxypropyl-β-cyclodextrin. J. Central South Univ. Technol. 18, 1897–1901 (2011)

    Article  CAS  Google Scholar 

  16. Li, J., Zhang, S., Zhou, Y., Guan, S., Zhang, L.: Inclusion complexes of fluconazole with β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin in aqueous solution: preparation, characterization and a structural insight. J. Incl. Phenom. Macrocycl. Chem. 84, 209–217 (2016)

    Article  CAS  Google Scholar 

  17. Bulani, V.D., Kothavade, P.S., Nagmoti, D.M., Kundaikar, H.S., Degani, M.S., Juvekar, A.R.: Characterisation and anti-inflammatory evaluation of the inclusion complex of ellagic acid with hydroxypropyl-β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 82, 361–372 (2015)

    Article  CAS  Google Scholar 

  18. Li, S., Yue, J., Zhou, W., Li, L.: An investigation into the preparation, characterization and antioxidant activity of puerarin/cyclodextrin inclusion complexes. J. Incl. Phenom. Macrocycl. Chem. 82, 453–460 (2015)

    Article  CAS  Google Scholar 

  19. Buschmann, H., Schollmeyer, E.: Applications of cyclodextrins in cosmetic products: a review. J. Cosmet. Sci. 53, 185–191 (2002)

    CAS  Google Scholar 

  20. Loftsson, T., Duchêne, D.: Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 329, 1–11 (2007)

    Article  CAS  Google Scholar 

  21. Morin-Crini, N., Crini, G.: Environmental applications of water-insoluble β-cyclodextrin–epichlorohydrin polymers. Prog. Polymer Sci. 38, 344–368 (2013)

    Article  CAS  Google Scholar 

  22. Singh, M., Sharma, R., Banerjee, U.C.: Biotechnological applications of cyclodextrins. Biotech. Adv. 20, 341–359 (2002)

    Article  CAS  Google Scholar 

  23. Szente, L., Szejtli, J.: Cyclodextrins as food ingredients. Trends Food Sci. Technol. 15, 137–142 (2004)

    Article  CAS  Google Scholar 

  24. Cheng, X., Wang, Q., Lu, C.S., Meng, Q.: Watching the conformational changes of maleonitriledithiolate chromophores inside the inclusion complexes with cyclodextrins: probed by ICD spectra and DFT calculations. J. Phys. Chem. A 114, 7230–7240 (2010)

    Article  CAS  Google Scholar 

  25. Gotsev, M.G., Ivanov, P.M.: Molecular dynamics of large-ring cyclodextrins: principal component analysis of the conformational interconversions. J. Phys. Chem. B 113, 5752–5759 (2009)

    Article  CAS  Google Scholar 

  26. Nagaraju, M., Sastry, G.N.: Theoretical studies on inclusion complexes of cyclodextrins. J. Phys. Chem. A 113, 9533–9542 (2009)

    Article  CAS  Google Scholar 

  27. Prabhu, A.A.M., Sankaranarayanan, R.K., Venkatesh, G., Rajendiran, N.: Dual fluorescence of Fast Blue RR and Fast Violet B: effects of solvents and cyclodextrin complexation. J. Phys. Chem. B 116, 9061–9074 (2012)

    Article  CAS  Google Scholar 

  28. Prabhu, A.A.M., Subramanian, V.K., Rajendiran, N.: Excimer formation in inclusion complexes of β-cyclodextrin with salbutamol, sotalol and atenolol: Spectral and molecular modeling studies. Spectrochim. Acta 96A, 95–107 (2012)

    Article  Google Scholar 

  29. Anconi, C.P.A., Nascimento Jr., C.S., Fedoce-Lopes, J., Santos, H.F.D., Almeida, W.B.D.: Ab initio calculations on low-energy conformers of α-cyclodextrin. J. Phys. Chem. A 111, 12127–12135 (2007)

    Article  CAS  Google Scholar 

  30. Fatiha, M., Leila, L., Leila, N., Eddine, K.D.: Theoretical study of the inclusion processes of ethyl p-hydroxybenzoate with β-cyclodextrin: PM3MM and ONIOM2 calculations. J. Taiwan Inst. Chem. Eng. 43, 868–872 (2012)

    Article  CAS  Google Scholar 

  31. Fatiha, M., Khatmi, D., Dhaoui, N., Bouzitouna, A., Abdaoui, M., Boucekkine, A.: Molecular model of CENS piperidine β-CD inclusion complex: DFT study. C.R. Chimie. 12, 1305–1312 (2009)

  32. Li, W., Lu, B.T., Sheng, A.G., Yang, F., Wang, Z.D.: Spectroscopic and theoretical study on inclusion complexation of beta-cyclodextrin with permethrin. J. Mol. Struct. 981, 194–203 (2010)

    Article  CAS  Google Scholar 

  33. Cui, H., Wu, L., Chen, J., Lin, X.: Multi-mode in situ spectroelectrochemical studies of redox pathways of adrenaline. J. Electroanal. Chem. 504, 195–200 (2001)

    Article  CAS  Google Scholar 

  34. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, E.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J., Gaussian 09 ed., Gaussian, Inc.: Wallingford CT (2009)

  35. Glendening, E.D., Reed, A.E, Carpenter, J.E., Weinhold, F.: NBO Version 3.1, TCI, University of Wisconsin, Madison (1998)

  36. Prabhu, A.A.M., Suresh Kumar, G.S.: Inclusion complexation of phenoxyaliphatic acid derivatives of 3,3′-bis(indolyl)methanes with β-cyclodextrin. J. Fluoresc. 24, 925–931 (2014)

    Article  Google Scholar 

  37. Corona-Avendano, S., Alarcon-Angeles, G., Rosquete-Pina, G.A., Rojas-Hernandez, A., Gutierrez, A., Ramirez-Silva, M.T., Romero-Romo, M., Palomar-Pardave, M.: New insights on the nature of the chemical species involved during the process of dopamine deprotonation in aqueous solution: theoretical and experimental study. J. Phys. Chem. B 111, 1640–1647 (2007)

    Article  CAS  Google Scholar 

  38. Palomar-Pardave, M., Alarcon-Angeles, G., Ramirez-Silva, M.T., Romero-Romo, M., Rojas-Hernandez, A., Corona-Avendano, S.: Electrochemical and spectrophotometric determination of the formation constants of the ascorbic acid-β-cyclodextrin and dopamine-β-cyclodextrin inclusion complexes. J. Incl. Phenom. Macrocycl. Chem. 69, 91–99 (2011)

    Article  CAS  Google Scholar 

  39. Benesi, A., Hildebrand, J.H.: A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 71, 2703–2707 (1949)

    Article  CAS  Google Scholar 

  40. Chen, H., Ji, H.: Effect of substitution degree of 2-hydroxypropyl-β-cyclodextrin on the alkaline hydrolysis of cinnamaldehyde to benzaldehyde. Supramol. Chem. 26, 796–803 (2014)

    Article  CAS  Google Scholar 

  41. Ilanchelian, M., Raj, C.R., Ramaraj, R.: Spectral studies on the cyclodextrin inclusion complexes of Toluidine Blue O and Meldola’s Blue in aqueous solution. J. Incl. Phenom. Macro. Chem. 36, 9–20 (2000)

    Article  CAS  Google Scholar 

  42. Jude Jenita, M., Venkatesh, G., Subramanian, V.K., Rajendiran, N.: Excimer formation in inclusion complexes of antihypertensive drugs with HP-α- and HP-β-cyclodextrins. Ind. J. Chem. 52A, 207–216 (2013)

    Google Scholar 

  43. Yuana, C., Liu, B., Liu, H.: Characterization of hydroxypropyl-β-cyclodextrins with different substitution patterns via FTIR, GC–MS, and TG–DTA. Carbohydr. Polym. 118, 36–40 (2015)

    Article  Google Scholar 

  44. Veiga, M.D., Ahsan, F.: Study of tolbutamide-hydroxypropyl-γ-cyclodextrin interaction in solution and solid state. Chem. Pharm. Bull. 48, 793–797 (2000)

    Article  CAS  Google Scholar 

  45. Fernandes, C.M., Vieira, M.T., Veiga, F.J.B.: Physicochemical characterization and in vitro dissolution behavior of nicardipine-cyclodextrins inclusion compounds. Eur. J. Pharm. Sci. 15, 79–88 (2002)

    Article  CAS  Google Scholar 

  46. Prabhu, A.A.M., Suresh Kumar, G.S., Fatiha, M., Sorimuthu, S., Sundar Raj, M.: Encapsulation of phenylalanine and 3,4-dihydroxyphenylalanine into β-cyclodextrin: Spectral and molecular modeling studies. J. Mol. Struct. 1079, 370–382 (2015)

    Article  Google Scholar 

  47. Yan, C., Xiu, Z., Li, X., Hao, C.: Molecular modeling study of β-cyclodextrin complexes with (+)-catechin and (−)-epicatechin. J. Mol. Graph. Model. 26, 420–428 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author A. Antony Muthu Prabhu is thankful to Dr. E. Subramanian, Head of the Department of Chemistry, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu for providing the instrumental facilities. This work was partially supported by the Fundación Séneca del Centro de Coordinación de la Investigación de la Región de Murcia under Project 18946/JLI/13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Antony Muthu Prabhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 631 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabhu, A.A.M., Fatiha, M., Leila, N. et al. Investigation of 3D Contour Map and Intermolecular Interaction of Dopamine with β-Cyclodextrin and 2-Hydroxypropyl-β-cyclodextrin. J Solution Chem 47, 409–429 (2018). https://doi.org/10.1007/s10953-018-0728-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-018-0728-x

Keywords

Navigation