Journal of Solution Chemistry

, Volume 47, Issue 2, pp 336–352 | Cite as

Thermodynamic Properties of Ternary Ionic Liquid Mixture Containing a Common Ion: Excess Molar Volumes, Excess Isentropic Compressibilities, Excess Molar Enthalpies and Excess Heat Capacities

  • Heena Gupta
  • Sunita Malik
  • Vinod Kumar Sharma


In the present investigations, the excess molar volumes, \( V_{ijk}^{\text{E}} \), excess isentropic compressibilities, \( \left( {\kappa_{S}^{\text{E}} } \right)_{ijk} \), and excess heat capacities, \( \left( {C_{p}^{\text{E}} } \right)_{ijk} \), for ternary 1-butyl-2,3-dimethylimidazolium tetrafluoroborate (i) + 1-butyl-3-methylimidazolium tetrafluoroborate (j) + 1-ethyl-3-methylimidazolium tetrafluoroborate (k) mixture at (293.15, 298.15, 303.15 and 308.15) K and excess molar enthalpies, \( \left( {H^{\text{E}} } \right)_{ijk} \), of the same mixture at 298.15 K have been determined over entire composition range of x i and x j . Satisfactorily corrections for the excess properties \( V_{ijk}^{\text{E}} \), \( \left( {\kappa_{S}^{\text{E}} } \right)_{ijk} \), \( \left( {H^{\text{E}} } \right)_{ijk} \) and \( \left( {C_{p}^{\text{E}} } \right)_{ijk} \) have been obtained by fitting with the Redlich–Kister equation, and ternary adjustable parameters along with standard errors have also been estimated. The \( V_{ijk}^{\text{E}} \), \( \left( {\kappa_{S}^{\text{E}} } \right)_{ijk} \), \( \left( {H^{\text{E}} } \right)_{ijk} \) and \( \left( {C_{p}^{\text{E}} } \right)_{ijk} \) data have been further analyzed in terms of Graph Theory that deals with the topology of the molecules. It has also been observed that Graph Theory describes well \( V_{ijk}^{\text{E}} \), \( \left( {\kappa_{S}^{\text{E}} } \right)_{ijk} \), \( \left( {H^{\text{E}} } \right)_{ijk} \) and \( \left( {C_{p}^{\text{E}} } \right)_{ijk} \) values of the ternary mixture comprised of ionic liquids.


Densities Excess isentropic compressibilities Excess heat capacities Excess molar enthalpies Graph Theory 



The authors are thankful to Mr. K. Chandrasekhar Reddy, SSBN College, Anantapur, for providing the Gaussian-09 facility and C-DAC, PUNE, India for providing the computational work. V. K. Sharma is grateful to the University Grant Commission (UGC), New Delhi for the award of SAP.

Supplementary material

10953_2018_719_MOESM1_ESM.docx (163 kb)
Supplementary material 1 (DOCX 162 kb)


  1. 1.
    Anastas, P.T., Warner, J.C.: Green Chemistry: Theory and Practice. Oxford University Press, New York (1998)Google Scholar
  2. 2.
    Gadilohar, B.L., Shankarling, G.S.: Choline based ionic liquids and their applications in organic transformation. J. Mol. Liq. 227, 234–261 (2017)CrossRefGoogle Scholar
  3. 3.
    Khan, S.N., Hailegiorgis, S.M., Man, Z., Shariff, A.M., Garg, S.: Thermophysical properties of concentrated aqueous solution of N-methyldiethanolamine (MDEA), piperazine (PZ), and ionic liquids hybrid solvent for CO2 capture. J. Mol. Liq. 229, 221–229 (2017)CrossRefGoogle Scholar
  4. 4.
    Farag, H.K., El-Kiey, S.R., Zein El Abedinb, S.: Influence of atmospheric water uptake on the hydrolysis of stannous chloride in the ionic liquid 1-butyl-1-methylpyrrolidinium trifluoromethylsulfonate. J. Mol. Liq. 230, 209–213 (2017)CrossRefGoogle Scholar
  5. 5.
    Armand, M., Endres, F., MacFarlane, D.R., Ohno, H., Scrosati, B.: Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 9, 621–629 (2009)CrossRefGoogle Scholar
  6. 6.
    Endres, F., Zein El Abedin, S.: Air and water stable ionic liquids in physical chemistry. Phys. Chem. Chem. Phys. 8, 2101–2116 (2006)CrossRefGoogle Scholar
  7. 7.
    Abbott, A.P., McKenzie, K.J.: Application of ionic liquids to the electrodeposition of metals. Phys. Chem. Chem. Phys. 8, 4265–4279 (2006)CrossRefGoogle Scholar
  8. 8.
    Moosavi, M., Khashei, F., Sharifi, A., Mirzaei, M.: The effects of temperature and alkyl chain length on the density and surface tension of the imidazolium-based geminal dicationic ionic liquids. J. Chem. Thermodyn. 107, 1–7 (2017)CrossRefGoogle Scholar
  9. 9.
    Domanska, U., Lukoshko, E.V.: Thermodynamics and activity coefficients at infinite dilution for organic solutes and water in the ionic liquid 1-butyl-1-methylmorpholinium tricyanomethanide. J. Chem. Thermodyn. 68, 53–59 (2014)CrossRefGoogle Scholar
  10. 10.
    Zhang, K., Cui, X., Feng, T., Zhang, Y., Liu, H.: Solubilities of diethyl phthalate, dicyclopentadiene, and styrene in ionic liquid 1-ethyl-3-methylimidazolium acetate. J. Chem. Eng. Data 62, 857–863 (2017)CrossRefGoogle Scholar
  11. 11.
    Deyab, M.A., Zaky, M.T., Nessim, M.I.: Inhibition of acid corrosion of carbon steel using four imidazolium tetrafluoroborates ionic liquids. J. Mol. Liq. 229, 396–404 (2017)CrossRefGoogle Scholar
  12. 12.
    Machanová, K., Troncoso, J., Jacquemin, J., Bendová, M.: Excess molar volumes and excess molar enthalpies in binary systems N-alkyl-triethylammonium bis(trifluoromethylsulfonyl)imide + methanol. Fluid Phase Equilib. 363, 156–166 (2014)CrossRefGoogle Scholar
  13. 13.
    Rao, V.S., Krishna, T.V., Mohan, T.M., Rao, P.M.: Excess molar volumes and excess molar enthalpies in binary systems N-alkyl-triethylammonium bis(trifluoromethylsulfonyl)imide + methanol. J. Chem. Thermodyn. 104, 150–161 (2017)CrossRefGoogle Scholar
  14. 14.
    Pal, A., Saini, M., Kumar, B.: Volumetric, ultrasonic and spectroscopic (FT-IR) studies for the binary mixtures of imidazolium based ILs with 1,2-propanediol. Fluid Phase Equilib. 411, 66–73 (2016)CrossRefGoogle Scholar
  15. 15.
    Singh, T., Kumar, A.: Aggregation behavior of ionic liquids in aqueous solutions: Effect of alkyl chain length, cations, and anions. J. Phys. Chem. B 111, 7843–7851 (2007)CrossRefGoogle Scholar
  16. 16.
    Sohrabi, B., Eivazzadeh, S., Sharifi, A., Azadbakht, R.: Self-assembled catanionic surfactant mixtures in aqueous/ionic liquid systems. J. Mol. Liq. 211, 754–760 (2015)CrossRefGoogle Scholar
  17. 17.
    Curras, M.R., Gomes, M.F.C., Husson, P., Padua, A.A.H., Garcia, J.: Calorimetric and volumetric study on binary mixtures 2,2,2-trifluoroethanol + (1-butyl-3-methylimidazolium tetrafluoroborate or 1-ethyl-3-methylimidazolium tetrafluoroborate). J. Chem. Eng. Data 55, 5504–5512 (2010)CrossRefGoogle Scholar
  18. 18.
    Jacquemin, J., Husson, P.: Comments and additional work on “High-Pressure Volumetric Properties of Imidazolium-Based Ionic Liquids: Effect of the Anion”. J. Chem. Eng. Data 57, 2409–2414 (2012)CrossRefGoogle Scholar
  19. 19.
    Blanco, A., Gayol, A., Gómez-Díaz, D., Navaza, J.M.: Density, speed of sound, refractive index and derivatives properties of the binary mixture n-hexane + n-heptane (or n-octane or n-nonane), T = 288.15–313.15 K. Phys. Chem. Liq. 51, 404–413 (2013)CrossRefGoogle Scholar
  20. 20.
    Gayol, A., Touriño, A., Iglesias, M.: Temperature dependence of the derived properties of mixtures containing chlorobenzene and aliphatic linear alkanes (C6–C12). Phys. Chem. Liq. 48, 661–681 (2010)CrossRefGoogle Scholar
  21. 21.
    Goenaga, J.M., Gayol, A., Concha, R.G., Iglesias, M., Resa, J.M.: Effect of temperature on thermophysical properties of ethanol + aliphatic alcohols (C4–C5) mixtures. Monatsh. Chem. 138, 403–436 (2007)CrossRefGoogle Scholar
  22. 22.
    Zafarani-Moattar, M.T., Shekaari, H., Agha, E.M.H.: Effect of temperature on thermophysical properties of ethanol + aliphatic alcohols (C4–C5) mixtures. Fluid Phase Equilib. 436, 38–46 (2017)CrossRefGoogle Scholar
  23. 23.
    Xu, Y., Tang, X., Li, J., Zhu, X.: Viscosity estimation of ternary mixtures containing ionic liquid from their binary subsystems: a comparison of three viscosity equations. Fluid Phase Equilib. 427, 166–174 (2016)CrossRefGoogle Scholar
  24. 24.
    Ramalingam, A., Balaji, A.: Liquid–liquid equilibrium (LLE) data for ternary mixtures of [EMIM][EtSO4] + thiophenebenzothiophene + n-hexadecane}and [EMIM][MeSO3] + thiophene/benzothiophene + n-hexadecane at 298.15 K. J. Mol. Liq. 212, 372–381 (2015)CrossRefGoogle Scholar
  25. 25.
    Corderí, S., Gómez, E., Domínguez, Á., Calvar, N.: (Liquid + liquid) equilibrium of ternary and quaternary systems containing heptane, cyclohexane, toluene and the ionic liquid [EMim][N(CN)2]. Experimental data and correlation. J. Chem. Thermodyn. 94, 16–23 (2016)CrossRefGoogle Scholar
  26. 26.
    Gupta, H., Kataria, J., Sharma, D., Sharma, V.K.: Topological investigations of molecular interactions in binary ionic liquid mixtures with a common ion: excess molar volumes, excess isentropic compressibilities, excess molar enthalpies and excess molar heat capacities. J. Chem. Thermodyn. 103, 189–205 (2016)CrossRefGoogle Scholar
  27. 27.
    Scholz, E.: Karl Fischer Titration. Springer, Berlin (1984)Google Scholar
  28. 28.
    Saini, N., Yadav, J.S., Jangra, S.K., Sharma, D., Sharma, V.K.: Thermodynamic studies of molecular interactions in mixtures of o-toulidine with pyridine and picolines: excess molar volumes, excess molar enthalpies, and excess isentropic compressibilities. J. Chem. Thermodyn. 43, 782–795 (2011)CrossRefGoogle Scholar
  29. 29.
    Dubey, G.P., Sharma, M.: Temperature and composition dependence of the densities, viscosities, and speeds of sound of binary liquid mixtures of 1-butanol with hexadecane and squalane. J. Chem. Eng. Data 53, 1032–1038 (2008)CrossRefGoogle Scholar
  30. 30.
    Pal, A., Kumara, B., Kang, T.S.: Effect of structural alteration of ionic liquid on their bulk and molecular level interactions with ethylene glycol. Fluid Phase Equilib. 358, 241–249 (2013)CrossRefGoogle Scholar
  31. 31.
    Malham, I.B., Turmine, M.: Viscosities and refractive indices of binary mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-2,3-dimethylimidazolium tetrafluoroborate with water at 298 K. J. Chem. Thermodyn. 40, 718–723 (2008)CrossRefGoogle Scholar
  32. 32.
    Ciocirlan, O., Iulian, O.: Properties of pure 1-butyl-2,3-dimethylimidazolium tetrafluoroborate ionic liquid and its binary mixtures with dimethyl sulfoxide and acetonitrile. J. Chem. Eng. Data 57, 3142–3148 (2012)CrossRefGoogle Scholar
  33. 33.
    Huo, Y., Xia, S., Ma, P.: Densities of ionic liquids, 1-butyl-3-methylimidazolium hexafluorophosphate and 1-butyl-3-methylimidazolium tetrafluoroborate, with benzene, acetonitrile, and 1-propanol at T = (293.15 to 343.15) K. J. Chem. Eng. Data 52, 2077–2082 (2007)CrossRefGoogle Scholar
  34. 34.
    Taib, M.M., Murugesan, T.: Density, refractive index, and excess properties of 1-butyl-3-methylimidazolium tetrafluoroborate with water and monoethanolamine. J. Chem. Eng. Data 57, 120–126 (2012)CrossRefGoogle Scholar
  35. 35.
    Pal, A., Kumar, B.: Volumetric and acoustic properties of binary mixtures of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate [bmim][BF4] with alkoxyalkanols at different temperatures. J. Chem. Eng. Data 57, 688–695 (2012)CrossRefGoogle Scholar
  36. 36.
    Klomfar, J., Souckova, M., Patek, J.: Buoyancy density measurements for 1-alkyl-3-methylimidazolium based ionic liquids with tetrafluoroborate anion. Fluid Phase Equilib. 282, 31–37 (2009)CrossRefGoogle Scholar
  37. 37.
    Sunkara, G.R., Tadavarthi, M.M., Tadekoru, V.K., Tadikonda, S.K., Bezawada, S.R.: Density, refractive index, and speed of sound of the binary mixture of 1-butyl-3-methylimidazolium tetrafluoroborate + N-vinyl-2-pyrrolidinone from T = (298.15 to 323.15) K at atmospheric pressure. J. Chem. Eng. Data 60, 886–894 (2015)CrossRefGoogle Scholar
  38. 38.
    Seki, S., Tsuzuki, S., Hayamizu, K., Umebayashi, Y., Serizawa, N., Takei, K., Miyashiro, H.: Comprehensive refractive index property for room-temperature ionic liquids. J. Chem. Eng. Data 57, 2211–2216 (2012)CrossRefGoogle Scholar
  39. 39.
    Stoppa, A., Zech, O., Kunz, W., Buchner, R.: The conductivity of imidazolium-based ionic liquids from (−35 to 195) CA Variation of cation’s alkyl chain. J. Chem. Eng. Data 55, 1768–1773 (2010)CrossRefGoogle Scholar
  40. 40.
    Reddy, M.S., Nayeem, S.M., Raju, K.T.S.S., Babu, B.H.: The study of solute–solvent interactions in 1-ethyl-3-methylimidazolium tetrafluoroborate + 2-ethoxyethanol from density, speed of sound, and refractive index measurements. J. Therm. Anal. Calorim. 124, 959–971 (2016)CrossRefGoogle Scholar
  41. 41.
    Vercher, E., Llopis, F.J., Gonzalez-Alfaro, V., Miguel, P.J., Orchilles, V., Martinez-Andreu, A.: Volumetric properties, viscosities and refractive indices of binary liquid mixtures of tetrafluoroborate-based ionic liquids with methanol at several temperatures. J. Chem. Thermodyn. 90, 174–184 (2015)CrossRefGoogle Scholar
  42. 42.
    Sharma, V.K., Rohilla, A.: Excess heat capacities of 1-methyl pyrrolidin-2-one and pyridine or picolines mixtures. Thermochim. Acta 568, 140–147 (2013)CrossRefGoogle Scholar
  43. 43.
    Sharma, V.K., Solanki, S., Bhagour, S., Sharma, D.: Excess molar enthalpies of ternary mixtures containing 1-ethyl-3-methylimidazolium tetrafluoroborate and organic solvents. Thermochim. Acta 569, 36–41 (2013)CrossRefGoogle Scholar
  44. 44.
    Sabbah, R., Xu-Wu, A., Chickos, J.S., Leitao, M.L.P., Roux, M.V., Torres, L.A.: Reference materials for calorimetry and differential thermal analysis. Thermochim. Acta 331, 93–204 (1999)CrossRefGoogle Scholar
  45. 45.
    Sanmamed, Y.A., Navia, P., Gonzalez-Salgado, D., Troncoso, J., Romani, L.: Pressure and temperature dependence of isobaric heat capacity for [Emim][BF4], [Bmim][BF4], [Hmim][BF4], and [Omim][BF4]. J. Chem. Eng. Data 55, 600–604 (2010)CrossRefGoogle Scholar
  46. 46.
    Rebelo, L.P.N., Najdanovic-Visak, V., Visak, Z.P., Nunes da Ponte, M., Szydlowski, J., Cerdeirina, C.A., Troncoso, J., Romani, L., Esperança, J.M.S.S., Guedesc, H.J.R., de Sousa, H.C.: A detailed thermodynamic analysis of [C4mim][BF4] + water as a case study to model ionic liquid aqueous solutions. Green Chem. 6, 369–381 (2004)CrossRefGoogle Scholar
  47. 47.
    Paulechka, Y.U., Blokhin, A.V., Kabo, G.J.: Evaluation of thermodynamic properties for non-crystallizable ionic liquids. Thermochim. Acta 604, 122–128 (2015)CrossRefGoogle Scholar
  48. 48.
    Waliszewski, D., Stepniak, I., Piekarski, H., Lewandowski, A.: Heat capacities of ionic liquids and their heats of solution in molecular liquids. Thermochim. Acta 433, 149–152 (2005)CrossRefGoogle Scholar
  49. 49.
    Yu, Y.H., Soriano, A.N., Li, M.H.: Heat capacities and electrical conductivities of 1-ethyl-3-methylimidazolium-based ionic liquids. J. Chem. Thermodyn. 41, 103–108 (2009)CrossRefGoogle Scholar
  50. 50.
    Benson, G.C., Kiyohara, O.: Evaluation of excess isentropic compressibilities and isochoric heat capacities. J. Chem. Thermodyn. 11, 1061–1064 (1979)CrossRefGoogle Scholar
  51. 51.
    Brocos, P., Amigo, A., Points, M., Calvo, E., Bravo, R.: Application of the Prigogine–Flory–Patterson model to excess volumes of mixtures of tetrahydrofuran or tetrahydropyran with cyclohexane or toluene. Thermochim. Acta 286, 297–306 (1996)CrossRefGoogle Scholar
  52. 52.
    Singh, T., Kumar, A., Kaur, M., Kaur, G., Kumar, H.: Non-ideal behavior of imidazolium based room temperature ionic liquids in ethylene glycol at T = (298.15 to 318.15) K. J. Chem. Thermodyn. 41, 717–723 (2009)CrossRefGoogle Scholar
  53. 53.
    Iulian, O., Ciocirlan, O.: Volumetric properties of binary mixtures of two 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids with molecular solvents. J. Chem. Eng. Data 57, 2640–2646 (2012)CrossRefGoogle Scholar
  54. 54.
    Redlich, O., Kister, A.T.: Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40, 345–348 (1948)CrossRefGoogle Scholar
  55. 55.
    Huggins, M.L.: The thermodynamic properties of liquids, including solutions. Part 2. Polymer solutions considered as diatomic systems. Polymer 12, 389–399 (1971)CrossRefGoogle Scholar
  56. 56.
    Singh, P.P., Bhatia, M.: Energetics of molecular interactions in binary mixtures of non-electrolytes containing a salt. J. Chem. Soc. Faraday Trans. I 85(11), 3807–3812 (1989)CrossRefGoogle Scholar
  57. 57.
    Singh, P.P., Nigam, R.K., Singh, K.C., Sharma, V.K.: Topological aspects of the thermodynamics of binary mixtures of non-electrolytes. Thermochim. Acta 46, 175–190 (1981)CrossRefGoogle Scholar
  58. 58.
    Singh, P.P.: Topological aspects of the effect of temperature and pressure on the thermodynamics of binary mixtures of non-electrolytes. Thermochim. Acta 66, 37–73 (1983)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Heena Gupta
    • 1
  • Sunita Malik
    • 1
  • Vinod Kumar Sharma
    • 1
  1. 1.Department of ChemistryM. D. UniversityRohtakIndia

Personalised recommendations