Journal of Solution Chemistry

, Volume 46, Issue 2, pp 259–280 | Cite as

CO2-Expanded Alkyl Lactates: A Physicochemical and Molecular Modeling Study

  • Yaocihuatl Medina-Gonzalez
  • Ahmed Jarray
  • Séverine Camy
  • Jean-Stéphane Condoret
  • Vincent Gerbaud


With the perspective of finding alternative benign media for various applications, this paper presents a study of the physicochemical behavior of some members of the alkyl lactate family when expanded by CO2. Experimental and molecular modeling techniques have been used to determine and/or predict relevant physicochemical properties of these systems such as swelling, Kamlet–Taft parameters {polarity/polarizability (π*) and proticity or hydrogen-bond donator ability (α), dielectric constants and solubility parameters}. To complete the study of these properties, sigma profiles of the three lactates molecules have been obtained by performing quantum mechanical and phase equilibria calculations of CO2/alkyl lactate systems by using the Peng–Robinson equation of state.


CO2 expanded liquids Alkyl lactates Green solvents Green solvent engineering 



Authors thank gratefully The Centre Informatique National de l’Enseignement Supérieur (CINES) for the permission to perform molecular dynamics calculations on the OCCIGEN supercomputer and their technical support for this project. This work was Granted access to the HPC resources of CINES under the allocation 2015-c2016087414 made by GENCI.


  1. 1.
    Gu, Y., Jerome, F.: Bio-based solvents: an emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry. Chem. Soc. Rev. 42, 9550–9570 (2013)CrossRefGoogle Scholar
  2. 2.
    Aparicio, S.: Computational study on the properties and structure of methyl lactate. J. Phys. Chem. A 111, 4671–4683 (2007)CrossRefGoogle Scholar
  3. 3.
    Pereira, C.S.M., Silva, V.M.T.M., Rodrigues, A.E.: Ethyl lactate as a solvent: properties, applications and production processes—a review. Green Chem. 13, 2658–2671 (2011)CrossRefGoogle Scholar
  4. 4.
    Dandia, A., Jain, A.K., Laxkar, A.K.: Ethyl lactate as a promising bio based green solvent for the synthesis of spiro-oxindole derivatives via 1,3-dipolar cycloaddition reaction. Tetrahedron Lett. 54, 3929–3932 (2013)CrossRefGoogle Scholar
  5. 5.
    Wan, J.-P., Wang, C., Zhou, R., Liu, Y.: Sustainable H2O/ethyl lactate system for ligand-free Suzuki–Miyaura reaction. RSC Adv. 2, 8789–8792 (2012)CrossRefGoogle Scholar
  6. 6.
    Bennett, J.S., Charles, K.L., Miner, M.R., Heuberger, C.F., Spina, E.J., Bartels, M.F., Foreman, T.: Ethyl lactate as a tunable solvent for the synthesis of aryl aldimines. Green Chem. 11, 166–168 (2009)CrossRefGoogle Scholar
  7. 7.
    Akien, G.R., Poliakoff, M.: A critical look at reactions in class I and II gas-expanded liquids using CO2 and other gases. Green Chem. 11, 1083–1100 (2009)CrossRefGoogle Scholar
  8. 8.
    Subramaniam, B.: Gas-expanded liquids for sustainable catalysis and novel materials: recent advances. Coord. Chem. Rev. 254, 1843–1853 (2010)CrossRefGoogle Scholar
  9. 9.
    Subramaniam, B.: Exploiting neoteric solvents for sustainable catalysis and reaction engineering: opportunities and challenges. Ind. Eng. Chem. Res. 49, 10218–10229 (2010)CrossRefGoogle Scholar
  10. 10.
    Medina-Gonzalez, Y., Tassaing, T., Camy, S., Condoret, J.-S.: Phase equilibrium of the CO2/glycerol system: experimental data by in situ FT-IR spectroscopy and thermodynamic modeling. J. Supercrit. Fluids 73, 97–107 (2013)CrossRefGoogle Scholar
  11. 11.
    Gohres, J.L., Kitchens, C.L., Hallett, J.P., Popov, A.V., Hernandez, R., Liotta, C.L., Eckert, C.A.: A spectroscopic and computational exploration of the cybotactic region of gas-expanded liquids: methanol and acetone. J. Phys. Chem. B. 112, 4666–4673 (2008)CrossRefGoogle Scholar
  12. 12.
    Scurto, A.M., Hutchenson, K., Subramaniam, B.: Gas-expanded liquids: fundamentals and applications. In: Gas-Expanded Liquids and Near-Critical Media, pp. 1–3. American Chemical Society (2009)Google Scholar
  13. 13.
    Cho, D.W., Shin, J., Shin, M.S., Bae, W., Kim, H.: High-pressure phase behavior of propyl lactate and butyl lactate in supercritical carbon dioxide. J. Chem. Thermodyn. 47, 177–182 (2012)CrossRefGoogle Scholar
  14. 14.
    Cho, D.W., Shin, M.S., Shin, J., Bae, W., Kim, H.: High-pressure phase behavior of methyl lactate and ethyl lactate in supercritical carbon dioxide. J. Chem. Eng. Data 56, 3561–3566 (2011)CrossRefGoogle Scholar
  15. 15.
    Peng, D.Y., Robinson, D.B.: A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15, 59–64 (1976)CrossRefGoogle Scholar
  16. 16.
    Perdew, J.P., Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244 (1992)CrossRefGoogle Scholar
  17. 17.
    Vosko, S.H., Wilk, L., Nusair, M.: Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58, 1200–1211 (1980)CrossRefGoogle Scholar
  18. 18.
    Ortmann, F., Bechstedt, F., Schmidt, W.G.: Semiempirical van der Waals correction to the density functional description of solids and molecular structures. Phys. Rev. B. 73, 205101 (2006)CrossRefGoogle Scholar
  19. 19.
    Delley, B.: Ground-state enthalpies: evaluation of electronic structure approaches with emphasis on the density functional method. J. Phys. Chem. A 110, 13632–13639 (2006)CrossRefGoogle Scholar
  20. 20.
    Gohres, J.L., Popov, A.V., Hernandez, R., Liotta, C.L., Eckert, C.A.: Molecular dynamics simulations of solvation and solvent reorganization dynamics in CO2-expanded methanol and acetone. J. Chem. Theory Comput. 5, 267–275 (2009)CrossRefGoogle Scholar
  21. 21.
    Chen, X., Yuan, C., Wong, C.Y., Zhang, G.: Molecular modeling of temperature dependence of solubility parameters for amorphous polymers. J. Mol. Model. 18, 2333–2341 (2012)CrossRefGoogle Scholar
  22. 22.
    Neumann, M., Steinhauser, O.: Computer simulation and the dielectric constant of polarizable polar systems. Chem. Phys. Lett. 106, 563–569 (1984)CrossRefGoogle Scholar
  23. 23.
    Sharma, M., Resta, R.: C.R.: Dipolar correlations and the dielectric permittivity of water. Phys. Rev. Lett. 98, 247401 (2007)CrossRefGoogle Scholar
  24. 24.
    Abbott, A.P., Hope, E.G., Mistry, R., Stuart, A.M.: Probing the structure of gas expanded liquids using relative permittivity, density and polarity measurements. Green Chem. 11, 1530–1535 (2009)CrossRefGoogle Scholar
  25. 25.
    Mistry, R.: Characterisation and Applications of CO2-Expanded Solvents, Ph.D. thesis. Iniversity of Leicester (2008)Google Scholar
  26. 26.
    Kurniasih, I.N., Liang, H., Mohr, P.C., Khot, G., Rabe, J.P., Mohr, A.: Nile Red dye in aqueous surfactant and micellar solution. Langmuir 31, 2639–2648 (2015)CrossRefGoogle Scholar
  27. 27.
    Aparicio, S., Halajian, S., Alcalde, R., García, B., Leal, J.M.: Liquid structure of ethyl lactate, pure and water mixed, as seen by dielectric spectroscopy, solvatochromic and thermophysical studies. Chem. Phys. Lett. 454, 49–55 (2008)CrossRefGoogle Scholar
  28. 28.
    Li, H., Maroncelli, M.: Solvation and solvatochromism in CO2-expanded liquids. 1. Simulations of the solvent systems CO2 + cyclohexane, acetonitrile, and methanol. J. Phys. Chem. B 110, 21189–21197 (2006)CrossRefGoogle Scholar
  29. 29.
    Lomba, L., Giner, B., Zuriaga, E., Gascón, I., Lafuente, C.: Thermophysical properties of lactates. Thermochim. Acta 575, 305–312 (2014)CrossRefGoogle Scholar
  30. 30.
    Lomba, L., Rosa Pino, M., Lafuente, C., Carmen Lopez, M., Giner, B.: The pρT behaviour of the lactate family. J. Chem. Thermodyn. 58, 8–13 (2013)CrossRefGoogle Scholar
  31. 31.
    Bondi, A.: van der Waals volumes and radii. J. Phys. Chem. 68, 441–451 (1964)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Yaocihuatl Medina-Gonzalez
    • 1
    • 2
  • Ahmed Jarray
    • 1
    • 2
  • Séverine Camy
    • 1
    • 2
  • Jean-Stéphane Condoret
    • 1
    • 2
  • Vincent Gerbaud
    • 1
    • 2
  1. 1.LGC (Laboratoire de Génie Chimique)CNRSToulouse Cedex 4France
  2. 2.UPS, INSA, INPT; LGC (Laboratoire de Génie Chimique)Université de ToulouseToulouseFrance

Personalised recommendations