Advertisement

Journal of Solution Chemistry

, Volume 46, Issue 1, pp 11–24 | Cite as

An Assessment of the Aggregation and Adsorption Behavior of the Sodium Dodecylsulfate–Cetyltrimethylammonium Bromide Mixed Surfactant System in Aqueous Medium

  • Sanchayita Rajkhowa
  • Sekh Mahiuddin
  • K. Ismail
Article

Abstract

Sodium dodecylsulfate and cetyltrimethylammonium bromide mixtures are important catanionic systems, as they have an inherent tendency to form vesicle structures. Despite extensive studies on the phase behavior and microstructures, there is dearth of basic information on the aggregation and adsorption behavior of this mixed system. In this work the critical micelle concentration, surface tension reduction effectiveness, surface excess, mixed micelle and monolayer compositions, activity coefficients, interaction parameters, counterion binding and Gibbs energy terms of this mixed system are determined by measuring its surface tension and conductance as a function of composition. The dependence of mixed micelle composition on surfactant concentration has been successfully demonstrated.

Keywords

Critical micelle concentration Mixed micelle Mixed monolayer Synergism Interaction parameter 

Notes

Acknowledgements

One of the authors (SR) is thankful to the UGC, New Delhi for the Research Fellowship.

References

  1. 1.
    Clint, J.H.: Micellization of mixed nonionic surface active agents. J. Chem. Soc. Faraday Trans. I 71, 1327–1334 (1975)CrossRefGoogle Scholar
  2. 2.
    Rubingh, D.N.: Mixed micelle solutions. In: Mittal, K.L. (ed.) Solution Chemistry of Surfactants, vol. 1, pp. 337–354. Plenum Press, New York (1979)CrossRefGoogle Scholar
  3. 3.
    Holland, P.M., Rubingh, D.N.: Nonideal multicomponent mixed micelle model. J. Phys. Chem. 87, 1984–1990 (1983)CrossRefGoogle Scholar
  4. 4.
    Rosen, M.J., Hua, X.Y.: Surface concentrations and molecular interactions in binary mixtures of surfactants. J. Colloid Interface Sci. 86, 164–172 (1982)CrossRefGoogle Scholar
  5. 5.
    Hua, X.Y., Rosen, M.J.: Synergism in binary mixtures of surfactants: I. Theoretical analysis. J. Colloid Interface Sci. 90, 212–219 (1982)CrossRefGoogle Scholar
  6. 6.
    Kamrath, R.F., Franses, E.I.: Thermodynamics of mixed micellization. Pseudo-phase separation models. Ind. Eng. Chem. Fundam. 22, 230–239 (1983)CrossRefGoogle Scholar
  7. 7.
    Kamrath, R.F., Franses, E.I.: Mass-action model of mixed micellization. J. Phys. Chem. 88, 1642–1648 (1984)CrossRefGoogle Scholar
  8. 8.
    Motomura, K., Yamanaka, M., Aratono, M.: Thermodynamic consideration of the mixed micelle of surfactants. Colloid Polym. Sci. 262, 948–955 (1984)CrossRefGoogle Scholar
  9. 9.
    Hoffmann, H., Pössnecker, G.: The mixing behavior of surfactants. Langmuir 10, 381–389 (1994)CrossRefGoogle Scholar
  10. 10.
    Rodenas, E., Valiente, M., del Sol Villafruela, M.: Different theoretical approaches for the study of the mixed tetraethylene glycol mono-n-dodecyl ether/hexadecyltrimethylammonium bromide micelles. J. Phys. Chem. B 103, 4549–4554 (1999)CrossRefGoogle Scholar
  11. 11.
    Puvvada, S., Blankschtein, D.: Thermodynamic description of micellization, phase behavior, and phase separation of aqueous solutions of surfactant mixtures. J. Phys. Chem. 96, 5567–5579 (1992)CrossRefGoogle Scholar
  12. 12.
    Puvvada, S., Blankschtein, D.: Theoretical and experimental investigations of micellar properties of aqueous solutions containing binary mixtures of nonionic surfactants. J. Phys. Chem. 96, 5579–5592 (1992)CrossRefGoogle Scholar
  13. 13.
    Herrington, K.L., Kaler, E.W., Miller, D.D., Zasadzinski, J.A., Chiruvolu, S.: Phase behavior of aqueous mixtures of dodecyltrimethylammonium bromide (DTAB) and sodium dodecyl sulfate (SDS). J. Phys. Chem. 97, 13792–13802 (1993)CrossRefGoogle Scholar
  14. 14.
    Yatcilla, M.T., Herrington, K.L., Brasher, L.L., Kaler, E.W., Chiruvolu, S., Zasadzinski, J.A.: Phase behavior of aqueous mixtures of cetyltrimethylammonium bromide (CTAB) and sodium octyl sulfate (SOS). J. Phys. Chem. 100, 5874–5879 (1996)CrossRefGoogle Scholar
  15. 15.
    Söderman, O., Herrington, K.L., Kaler, E.W., Miller, D.D.: Transition from micelles to vesicles in aqueous mixtures of anionic and cationic surfactants. Langmuir 13, 5531–5538 (1997)CrossRefGoogle Scholar
  16. 16.
    Bergström, M., Pedersen, J.S.: Small-angle neutron scattering (SANS) study of aggregates formed from aqueous mixtures of sodium dodecyl sulfate (SDS) and dodecyltrimethylammonium bromide (DTAB). Langmuir 14, 3754–3761 (1998)CrossRefGoogle Scholar
  17. 17.
    Villeneuve, M., Kaneshina, S., Imae, T., Aratono, M.: Vesicle–micelle equilibrium of anionic and cationic surfactant mixture studied by surface tension. Langmuir 15, 2029–2036 (1999)CrossRefGoogle Scholar
  18. 18.
    Jose, R., Patel, T.J., Cather, T.A., Grebowicz, J., Han, H., Bhowmik, P.K., Agra-Kooijman, D.M., Kumar, S.: Room temperature thermotropic liquid crystalline phases of catanionic surfactants derived from quaternary ammonium surfactants and bis(2-ethylhexyl) sulfosuccinate. J. Colloid Interface Sci. 411, 61–68 (2013)CrossRefGoogle Scholar
  19. 19.
    Sakai, H., Okabe, Y., Tsuchiya, K., Sakai, K., Abe, M.: Catanionic mixtures forming gemini-like amphiphiles. J. Oleo Sci. 60, 549–555 (2011)CrossRefGoogle Scholar
  20. 20.
    Majhi, P.R., Blume, A.: Temperature-induced micelle–vesicle transitions in DMPC–SDS and DMPC–DTAB mixtures studied by calorimetry and dynamic light scattering. J. Phys. Chem. B 106, 10753–10763 (2002)CrossRefGoogle Scholar
  21. 21.
    Yin, H., Huang, J., Lin, Y., Zhang, Y., Qiu, S., Ye, J.: Heating-induced micelle to vesicle transition in the cationic–anionic surfactant systems: comprehensive study and understanding. J. Phys. Chem. B 109, 4104–4110 (2005)CrossRefGoogle Scholar
  22. 22.
    Yin, H.Q., Zhou, Z.K., Huang, J.B., Zheng, R., Zhang, Y.Y.: Temperature-induced micelle to vesicle transition in the sodium dodecylsulfate/dodecyltriethylammonium bromide system. Angew. Chem. Int. Ed. 42, 2188–2191 (2003)CrossRefGoogle Scholar
  23. 23.
    Yin, H., Huang, J., Gao, Y., Fu, H.: Temperature-controlled vesicle aggregation in the mixed system of sodium n-dodecyl sulfate/n-dodecyltributylammonium bromide. Langmuir 21, 2656–2659 (2005)CrossRefGoogle Scholar
  24. 24.
    Yin, H., Lei, S., Zhu, S., Huang, J., Ye, J.: Micelle-to-vesicle transition induced by organic additives in catanionic surfactant systems. Chem. Eur. J. 12, 2825–2835 (2006)CrossRefGoogle Scholar
  25. 25.
    Wu, F.-G., Yu, J.-S., Sun, S.-F., Yu, Z.-W.: Comparative studies on the crystalline to fluid phase transitions of two equimolar cationic/anionic surfactant mixtures containing dodecylsulfonate and dodecylsulfate. Langmuir 27, 14740–14747 (2011)CrossRefGoogle Scholar
  26. 26.
    Pucci, C., Barbetta, A., Sciscione, F., Tardani, F., Mesa, C.L.: Ion distribution around synthetic vesicles of the cat-anionic type. J. Phys. Chem. B 118, 557–566 (2014)CrossRefGoogle Scholar
  27. 27.
    Kadi, N.E., Martins, F., Clausse, D., Schulz, P.C.: Critical micelle concentrations of aqueous hexadecyltrimethylammonium bromide–sodium oleate mixtures. Colloid Polym. Sci. 281, 353–362 (2003)CrossRefGoogle Scholar
  28. 28.
    Miraglia, D.B., Schulz, E.N., Rodriguez, J.L.M., Schulz, P.C., Salinas, D.: Effect of the concentration and composition on the size and shape of micelles of sodium oleate–cetyltrimethylammonium bromide mixtures. J. Colloid Interface Sci. 351, 197–202 (2010)CrossRefGoogle Scholar
  29. 29.
    Chen, J., Hao, J.: Molecular dynamics simulation of cetyltrimethylammonium bromide and sodium octyl sulfate mixtures: aggregate shape and local surfactant distribution. Phys. Chem. Chem. Phys. 15, 5563–5571 (2013)CrossRefGoogle Scholar
  30. 30.
    Chen, L., Xiao, J.-X., Ruan, K., Ma, J.: Homogeneous solutions of equimolar mixed cationic–anionic surfactants. Langmuir 18, 7250–7252 (2002)CrossRefGoogle Scholar
  31. 31.
    Mao, R., Lee, M.-T., Vishnyakov, A., Neimark, A.V.: Modeling aggregation of ionic surfactants using a smeared charge approximation in dissipative particle dynamics simulations. J. Phys. Chem. B 119, 11673–11683 (2015)CrossRefGoogle Scholar
  32. 32.
    Tah, B., Pal, P., Mahato, M., Talapatra, G.B.: Aggregation behavior of SDS/CTAB catanionic surfactant mixture in aqueous solution and at the air/water interface. J. Phys. Chem. B 115, 8493–8499 (2011)CrossRefGoogle Scholar
  33. 33.
    Andreozzi, P., Funari, S.S., Mesa, C.L., Mariani, P., Ortore, M.G., Sinibaldi, R., Spinozzi, F.: Multi- to unilamellar transitions in catanionic vesicles. J. Phys. Chem. B 114, 8056–8060 (2010)CrossRefGoogle Scholar
  34. 34.
    Mitra, S., Sharma, V.K., Garcia-Sakai, V., Orecchini, A., Seydel, T., Johnson, M., Mukhopadhyay, R.: Enhancement of lateral diffusion in catanionic vesicles during multilamellar-to-unilamellar transition. J. Phys. Chem. B 120, 3777–3784 (2016)CrossRefGoogle Scholar
  35. 35.
    Vlachy, N., Arteaga, A.F., Klaus, A., Touraud, D., Drechsler, M., Kunz, W.: Influence of additives and cation chain length on the kinetic stability of supersaturated catanionic systems. Colloids Surf. A 338, 135–141 (2009)CrossRefGoogle Scholar
  36. 36.
    Mahiuddin, S., Zech, O., Raith, S., Touraud, D., Kunz, W.: Catanionic micelles as a model to mimic biological membranes in the presence of anesthetic alcohols. Langmuir 25, 12516–12521 (2009)CrossRefGoogle Scholar
  37. 37.
    Letizia, C., Andreozzi, P., Scipioni, A., Mesa, C.L., Bonincontro, A., Spigone, E.: Protein binding onto surfactant-based synthetic vesicles. J. Phys. Chem. B 111, 898–908 (2007)CrossRefGoogle Scholar
  38. 38.
    Chakraborty, H., Sarkar, M.: Optical spectroscopic and TEM studies of catanionic micelles of CTAB/SDS and their interaction with a NSAID. Langmuir 20, 3551–3558 (2004)CrossRefGoogle Scholar
  39. 39.
    Moallemi, M., Sohrabi, B., Fazeli, S.: Electrolyte effect on adsorption and the phase transition from microstructures to nanostructures in ionic/ionic surfactants mixture. J. Colloid Interface Sci. 361, 159–169 (2011)CrossRefGoogle Scholar
  40. 40.
    Sohrabi, B., Eivazzadeh, S., Sharifi, A., Azadbakht, R.: Self-assembled catanionic surfactant mixtures in aqueous/ionic liquid systems. J. Mol. Liq. 211, 754–760 (2015)CrossRefGoogle Scholar
  41. 41.
    Sohrabi, B., Gharibi, H., Tajik, B., Javadian, S., Hashemianzadeh, M.: Molecular interactions of cationic and anionic surfactants in mixed monolayers and aggregates. J. Phys. Chem. 112, 14869–14876 (2008)CrossRefGoogle Scholar
  42. 42.
    Tang, Y., Du, B., Yang, J., Zhang, Y.: Temperature effects on surface activity and application in oxidation of toluene derivatives of CTAB–SDS with KMnO4. J. Chem. Sci. 118, 281–285 (2006)CrossRefGoogle Scholar
  43. 43.
    Abdel-Rahem, R., Abdel-Shafi, A.A., Al-Hawarine, J., Ayesh, A.S.: The influence of surfactant’s synergism on the solubilization of some fluorescent compounds. Tenside Surf. Deterg. 48, 445–452 (2011)CrossRefGoogle Scholar
  44. 44.
    Tomasic, V., Stefanic, I., Filipovic-Vincekovic, N.: Adsorption, association and precipitation in hexadecyltrimethylammonium bromide/sodium dodecyl sulfate mixtures. Colloid Polym. Sci. 277, 153–163 (1999)CrossRefGoogle Scholar
  45. 45.
    Alam, M.S., Ragupathy, R., Mandal, A.B.: The self-association and mixed micellization of an anionic surfactant, sodium dodecyl sulfate, and a cationic surfactant, cetyltrimethylammonium bromide: conductometric, dye solubilization, and surface tension studies. J. Disper. Sci. Technol. 37, 1645–1654 (2016)CrossRefGoogle Scholar
  46. 46.
    Umlong, I.M., Ismail, K.: Micellization behaviour of sodium dodecyl sulfate in different electrolyte media. Colloids Surf. A 299, 8–14 (2007)CrossRefGoogle Scholar
  47. 47.
    Singh, O.G., Ismail, K.: Micellization behavior of mixtures of sodium dioctylsulfosuccinate with sodium dodecylsulfate in water. J. Surf. Deterg. 11, 89–96 (2008)CrossRefGoogle Scholar
  48. 48.
    Cui, X., Jiang, Y., Yang, C., Lu, X., Chen, H., Mao, S., Liu, M., Yuan, H., Luo, P., Du, Y.: Mechanism of the mixed surfactant micelle formation. J. Phys. Chem. B 114, 7808–7816 (2010)CrossRefGoogle Scholar
  49. 49.
    Zhu, B.Y., Rosen, M.J.: Synergism in binary mixtures of surfactants: IV. Effectiveness of surface tension reduction. J. Colloid Interface Sci. 99, 435–442 (1984)CrossRefGoogle Scholar
  50. 50.
    Jana, P.K., Moulik, S.P.: Interaction of bile salts with hexadecyltrimethylammonium bromide and sodium dodecyl sulfate. J. Phys. Chem. 95, 9525–9532 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Sanchayita Rajkhowa
    • 1
  • Sekh Mahiuddin
    • 2
  • K. Ismail
    • 1
  1. 1.Department of ChemistryNorth-Eastern Hill UniversityShillongIndia
  2. 2.North East Institute of Science and TechnologyJorhatIndia

Personalised recommendations