Advertisement

Journal of Solution Chemistry

, Volume 45, Issue 12, pp 1879–1889 | Cite as

Thermodynamic Investigation of Electrolytes of the Vanadium Redox Flow Battery (V): Conductivity and Ionic Dissociation of Vanadyl Sulfate in Aqueous Solution in the 278.15–318.15 K Temperature Range

  • Xiang-Rong Li
  • Ye Qin
  • Wei-Guo Xu
  • Jian-Guo Liu
  • Jia-Zhen Yang
  • Qian Xu
  • Chuan-Wei Yan
Article

Abstract

Precise measurements of electrical conductivities of aqueous VOSO4 solutions at various molalities were performed from 278.15 to 318.15 K in 5 K intervals. In terms of Fuoss’s equation and Shedlovsky’s equation, the limiting molar conductance, Λ 0, and the dissociation constant, K d, of the ion-pair [VOSO4]0 were determined. From an empirical equation for the temperature dependence of dissociation constants, the thermodynamic functions for the dissociation process of the ion-pair [VOSO4]0 were calculated. It is discovered that the reaction for ion-pair dissociation is unfavorable under normal pressure and room temperature because the standard state dissociation Gibbs energy (ΔG 0) > 0. The calculated values of the dissociation entropy and the dissociation enthalpy are negative, indicating that the dissociation entropy opposes the dissociation process.

Keywords

Vanadium redox flow battery Ion pair Dissociation constant Conductivity Dissociation entropy Vanadyl sulfate 

Notes

Acknowledgements

This research was supported by the National Nature Science Foundation of China (General Programs Numbers 21373009 and 21573257).

Supplementary material

10953_2016_545_MOESM1_ESM.doc (576 kb)
Supplementary material 1 (DOC 576 kb)

References

  1. 1.
    Sum, E., Rychcik, M., Skyllas-Kazacos, M.: Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery. J. Power Sources 16, 85–95 (1985)CrossRefGoogle Scholar
  2. 2.
    Kazacos, M., Cheng, M., Skyllas-Kazacos, M.: Vanadium redox cell electrolyte optimization studies. J. Appl. Electrochem. 20, 463–467 (1990)CrossRefGoogle Scholar
  3. 3.
    Skyllas-kazacos, M., Rychick, M., Robins, R.: All-vanadium redox battery. US Patent No. 4, 567–786 (1986)Google Scholar
  4. 4.
    Rahman, F., Skyllas-Kazacos, M.: Solubility of vanadyl sulfate in concentrated sulfuric acid solutions. J. Power Sources 72, 105–110 (1998)CrossRefGoogle Scholar
  5. 5.
    Oriji, G., Katayama, Y., Miura, T.: Investigation on V(IV)/V(V) species in a vanadium redox flow battery. Electrochim. Acta 49, 3091–3095 (2004)CrossRefGoogle Scholar
  6. 6.
    Oriji, G., Katayama, Y., Miura, T.: Investigations on V(IV)/V(V) and V(II)/V(III) redox reactions by various electrochemical methods. J. Power Sources 139, 321–324 (2005)CrossRefGoogle Scholar
  7. 7.
    Hu, Y.F., Zhang, X.M., Li, J.G., Liang, Q.Q.: Semi-ideal solution theory. 2. Extension to conductivity of mixed electrolyte solutions. J. Phys. Chem. B 112, 15376–15381 (2008)CrossRefGoogle Scholar
  8. 8.
    Yang, J.Z., Liu, J.G., Tong, J., Guan, W., Fang, D.W., Yan, C.W.: Systematic study of the simple predictive approaches for thermodynamic and transport properties of multicomponent solutions. Ind. Eng. Chem. Res. 49, 7671–7677 (2010)CrossRefGoogle Scholar
  9. 9.
    Tomsic, M., Bester-Rogac, M., Jamnik, A., Neueder, R., Barthel, J.: Conductivity of magnesium sulfate in water from 5 to 35 °C and from infinite dilution to saturation. J. Solution Chem. 31, 19–31 (2002)CrossRefGoogle Scholar
  10. 10.
    Corti, H., Crovetto, R., Fernandez-Prini, R.: Mobilities and ion-pairing in LiB(OH)4 and NaB(OH)4 aqueous-solutions—a conductivity study. J. Solution Chem. 9, 617–625 (1980)CrossRefGoogle Scholar
  11. 11.
    Chen, Y.J., Zhang, H.H., Li, A.Q., Zhuo, K.L.: Conductivities for ZnSO4/MgSO4 + sucrose/trehalose plus water systems at 298.15 K. Fluid Phase Equilibr. 388, 78–83 (2015)CrossRefGoogle Scholar
  12. 12.
    Bester-Rogac, M.: Electrical conductivity of concentrated aqueous solutions of divalent metal sulfates. J. Chem. Eng. Data 53, 1355–1359 (2008)CrossRefGoogle Scholar
  13. 13.
    Bianchi, H.L., Dujovne, I., Fernández-Prini, R.: Comparison of electrolytic conductivity theories: performance of classical and new theories. J. Solution Chem. 29, 237–253 (2000)CrossRefGoogle Scholar
  14. 14.
    Rogac, M.B., Babic, V., Perger, T.M., Neueder, R., Barthel, J.: Conductometric study of ion association of divalent symmetric electrolytes: I. CoSO4, NiSO4, CoSO4 and ZnSO4 in water. J. Mol. Liq. 118, 111–118 (2005)CrossRefGoogle Scholar
  15. 15.
    Katayama, S.: Conductimetric determination of ion-association constants for calcium, cobalt, zinc, and cadmium sulfates in aqueous-solutions at various temperatures between 0 and 45 °C. J. Solution Chem. 5, 241–248 (1976)CrossRefGoogle Scholar
  16. 16.
    Liu, J.G., Xue, W.F., Qin, Y., Yan, C.W., Yang, J.Z.: Enthalpy of solution for anhydrous VOSO4 and estimated enthalpy of reaction for formation of the ion pair [VOSO4]0. J. Chem. Eng. Data 54, 1938–1941 (2009)CrossRefGoogle Scholar
  17. 17.
    Liu, J.G., Qin, Y., Yan, C.W.: Enthalpies of solution for VOSO4·2.76H2O(s) in water and in aqueous H2SO4. Acta Chim. Sinica 68, 722–726 (2010)Google Scholar
  18. 18.
    Qin, Y., Liu, J.G., Di, Y.Y., Yan, C.W., Zeng, C.L., Yang, J.Z.: Thermodynamic investigation of electrolytes of the vanadium redox flow battery (II): a study on low-temperature heat capacities and thermodynamic properties of VOSO4·2.63H2O(s). J. Chem. Eng. Data 55, 1276–1279 (2010)CrossRefGoogle Scholar
  19. 19.
    Qin, Y., Xue, W.F., Liu, J.G., Xu, W.G., Yan, C.W., Yang, J.Z.: The estimation of standard molar enthalpies of solution for VOSO4·nH2O(s) in water and in aqueous H2SO4. J. Solution Chem. 39, 857–863 (2010)CrossRefGoogle Scholar
  20. 20.
    Qin, Y., Liu, J.G., Yan, C.W.: Thermodynamic investigation of electrolytes of the vanadium redox flow battery (III): volumetric properties of aqueous VOSO4. J. Chem. Eng. Data 57, 102–105 (2012)CrossRefGoogle Scholar
  21. 21.
    Bester-Rogac, M., Klofutar, C., Rudan-Tasic, D.: Association of hydrophobic ions in aqueous solution: a conductometric study of symmetrical tetraalkylammonium cyclohexylsulfamates. J. Mol. Liq. 156, 82–88 (2010)CrossRefGoogle Scholar
  22. 22.
    Chen, H., Wang, X.H.: Brief discussion on the determination of sulfate radicals with gravimetric method and volumetric method. China Well Rock Salt 36, 41–42 (2005)Google Scholar
  23. 23.
    Huang, Z.Q.: Introduction of theory in electrolyte solution, revised edn. Science Press, Beijing (1983)Google Scholar
  24. 24.
    Harned, H.S., Owen, B.B.: The Physical Chemistry of Electrolytic Solutions, vol. 3, pp. 283–330. Reinhold Pub, New York (1958)Google Scholar
  25. 25.
    Davies, C.W.: Ion association, pp. 9–31. Butterworths, London (1962)Google Scholar
  26. 26.
    Fuoss, R.M.: Solution of the conductance equation. J. Am. Chem. Soc. 57, 488–489 (1935)CrossRefGoogle Scholar
  27. 27.
    Shedlovsky, T.: The computation of ionization constants and limiting conductance values from conductivity measurements. J. Franklin Inst. 225, 739–743 (1938)CrossRefGoogle Scholar
  28. 28.
    Pitzer, K.S: Ion interaction approach: Theory and data correlation. In: Pitzer, K.S. (ed.) Activity Coefficients in Electrolyte Solutions, 2nd edn., Chap. 3. CRC Press, Boca Raton (1991)Google Scholar
  29. 29.
    Strehlow, H., Wendt, H.: Fast ionic reactions in solution. IV. The formation of the vanadyl sulfate complex in aqueous solution. Inorg. Chem. 2, 6–10 (1963)CrossRefGoogle Scholar
  30. 30.
    Yang, J.Z., Men, D.Y., Liang, C.Y., Zhang, L.T., He, L.M., Sun, A.L.: Thermodynamics of the dissociation of amino-acid in mixed-solvents. 2. Glycine in 0.1 mole fraction of 1,2-propanediol water at 278.15–318.15 K. J. Phys. Chem. 93, 7248–7252 (1989)CrossRefGoogle Scholar
  31. 31.
    Yang, J.Z., Sun, B., Song, P.S.: Thermodynamics of ionic association 1—The standard association constant of the ion pair Li+B(OH)4. Thermochim. Acta 352, 69–74 (2000)CrossRefGoogle Scholar
  32. 32.
    Yang, J.Z., Zhang, R.B., Xue, H., Tian, P.: Thermodynamics of the ion pair [GaCl2]+ at temperatures from 278.15 to 318.15 K. J. Chem. Thermodyn. 34, 401–407 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Xiang-Rong Li
    • 1
    • 2
  • Ye Qin
    • 2
  • Wei-Guo Xu
    • 2
    • 3
  • Jian-Guo Liu
    • 2
  • Jia-Zhen Yang
    • 2
    • 3
  • Qian Xu
    • 4
  • Chuan-Wei Yan
    • 2
  1. 1.School of MetallurgyNortheastern UniversityShenyangChina
  2. 2.Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  3. 3.College of ChemistryLiaoning UniversityShenyangChina
  4. 4.State Key Laboratory of Advanced Special SteelShanghai UniversityShanghaiChina

Personalised recommendations