Advertisement

Journal of Solution Chemistry

, Volume 45, Issue 12, pp 1826–1841 | Cite as

A New Model of Excess Gibbs Energy for Systems Containing Polymer–Salt–Water Applicable to Aqueous Two Phase Systems

  • Poorya Mobalegholeslam
  • Hamid Bakhshi
Article

Abstract

A new thermodynamics model is presented for the phase equilibria calculations of 15 different aqueous two phase systems (ATPSs). The systems consist of water, polyethylene glycol and various salts (ammonium sulfate, sodium sulfate and sodium tartrate). The excess Gibbs energy model developed in the present study consists of three different terms. Long range and short range contributions and a combinatorial part of the excess Gibbs energy are used for obtaining the activity coefficient of species in the mixture. For the long range term, an extended Debye–Hückel equation is used and the Freed-FV equation is applied to calculate the combinatorial part of activity coefficient. For the short range contribution a new model based on the virial osmotic coefficient is developed to determine the equilibrium composition in ATPSs. Moreover, binary interaction parameters and calculated binodal curve data of each system are reported. The results show that the absolute average deviation percent (AAD%) of the model was less than 1% for the studied systems. Also, the phase equilibria calculations were done using UNIQUAC, UNIFAC, MNRTL–NRF and Modified Wilson equations to compare the results of the models with the results obtained by the new presented model. The results show that the new model can calculate the phase equilibria in ATPS systems better than most of the above equations.

Keywords

Aqueous two phase system Excess Gibbs energy Modeling Phase equilibrium Activity coefficient Salt Polyethylene glycol 

References

  1. 1.
    Beijerinck, M.: Über eine Eigentümlichkeit der löslichen Stärke. Centr-Bl. f. Bakter. u. Parasitenk 2, 698–699 (1896)Google Scholar
  2. 2.
    Albertsson, P.-Å.: Partition of Cell Particles and Macromolecules: Separation and Purification of Biomolecules, Cell Organelles, Membranes, and Cells in Aqueous Polymer Two-Phase Systems and their Use in Biochemical Analysis and Biotechnology. Wiley, New York (1986)Google Scholar
  3. 3.
    Kula, M.-R., Kroner, K.H., Hustedt, H.: Purification of enzymes by liquid–liquid extraction. In: Fiechter, A. (ed.) Reaction Engineering, pp. 73–118. Springer, Berlin (1982)CrossRefGoogle Scholar
  4. 4.
    Cordes, A., Flossdorf, J., Kula, M.R.: Affinity partitioning: development of mathematical model describing behavior of biomolecules in aqueous two-phase systems. Biotechnol. Bioeng. 30, 514–520 (1987)CrossRefGoogle Scholar
  5. 5.
    Liu, Y., Yu, Y., Chen, M., Xiao, X.: Advances in aqueous two-phase systems and applications in protein separation and purification. Can. J. Chem. Eng. Technol. 2, 1–7 (2011)Google Scholar
  6. 6.
    King, R.S., Blanch, H.W., Prausnitz, J.M.: Molecular thermodynamics of aqueous two-phase systems for bioseparations. AIChE J. 34, 1585–1594 (1988)CrossRefGoogle Scholar
  7. 7.
    Johansson, H.-O., Karlström, G., Tjerneld, F.: Separation of amino acids and peptides by temperature induced phase partitioning. Theoretical model for partitioning and experimental data. Bioseparation 7, 259–267 (1998)CrossRefGoogle Scholar
  8. 8.
    Sebastiao, M., Martel, P., Baptista, A., Petersen, S., Cabral, J., Aires-Barros, M.: Predicting the partition coefficients of a recombinant cutinase in polyethylene glycol/phosphate aqueous two-phase systems. Biotechnol. Bioeng. 56, 248–257 (1997)CrossRefGoogle Scholar
  9. 9.
    Baskir, J.N., Hatton, T.A., Suter, U.W.: Thermodynamics of the partitioning of biomaterials in two-phase aqueous polymer systems: comparison of lattice model to experimental data. J. Phys. Chem. 93, 2111–2122 (1989)CrossRefGoogle Scholar
  10. 10.
    Renon, H., Prausnitz, J.M.: Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 14, 135–144 (1968)CrossRefGoogle Scholar
  11. 11.
    Abrams, D.S., Prausnitz, J.M.: Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE J. 21, 116–128 (1975)CrossRefGoogle Scholar
  12. 12.
    Wilson, G.M.: Vapor–liquid equilibrium. XI. A new expression for the excess free energy of mixing. J. Am. Chem. Soc. 86, 127–130 (1964)CrossRefGoogle Scholar
  13. 13.
    Fredenslund, A., Gmehling, J., Michelsen, M.L., Rasmussen, P., Prausnitz, J.M.: Computerized design of multicomponent distillation columns using the UNIFAC group contribution method for calculation of activity coefficients. Ind. Eng. Chem. Process Des. Dev. 16, 450–462 (1977)CrossRefGoogle Scholar
  14. 14.
    Haghtalab, A., Vera, J.: A nonrandom factor model for the excess Gibbs energy of electrolyte solutions. AIChE J. 34, 803–813 (1988)CrossRefGoogle Scholar
  15. 15.
    Chen, C.C., Britt, H.I., Boston, J., Evans, L.: Local composition model for excess Gibbs energy of electrolyte systems. Part I: Single solvent, single completely dissociated electrolyte systems. AIChE J. 28, 588–596 (1982)CrossRefGoogle Scholar
  16. 16.
    Haghtalab, A., Asadollahi, M.A.: An excess Gibbs energy model to study the phase behavior of aqueous two-phase systems of polyethylene glycol + dextran. Fluid Phase Equilibr. 171, 77–90 (2000)CrossRefGoogle Scholar
  17. 17.
    Sadeghi, R.: A modified Wilson model for the calculation of vapour + liquid equilibrium of aqueous polymer + salt solutions. J. Chem. Thermodyn. 37, 323–329 (2005)CrossRefGoogle Scholar
  18. 18.
    Xu, X., Madeira, P.P., Teixeira, J.A., Macedo, E.A.: A new modified Wilson equation for the calculation of vapor–liquid equilibrium of aqueous polymer solutions. Fluid Phase Equilibr. 213, 53–63 (2003)CrossRefGoogle Scholar
  19. 19.
    McMillan Jr., W.G., Mayer, J.E.: The statistical thermodynamics of multicomponent systems. J. Chem. Phys. 13, 276–305 (1945)CrossRefGoogle Scholar
  20. 20.
    Hill, T.L.: Theory of solutions. II. Osmotic pressure virial expansion and light scattering in two component solutions. J. Chem. Phys. 30, 93–97 (1959)CrossRefGoogle Scholar
  21. 21.
    Kabiri-Badr, M., Cabezas, H.: A thermodynamic model for the phase behavior of salt–polymer aqueous two-phase systems. Fluid Phase Equilibr. 115, 39–58 (1996)CrossRefGoogle Scholar
  22. 22.
    Perez, B., Malpiedi, L.P., Tubío, G., Nerli, B., de Alcântara Pessôa Filho, P.: Experimental determination and thermodynamic modeling of phase equilibrium and protein partitioning in aqueous two-phase systems containing biodegradable salts. J. Chem. Thermodyn. 56, 136–143 (2013)CrossRefGoogle Scholar
  23. 23.
    Großmann, C., Zhu, J., Maurer, G.: Phase equilibrium studies on aqueous two-phase systems containing amino acids and peptides. Fluid Phase Equilibr. 82, 275–282 (1993)CrossRefGoogle Scholar
  24. 24.
    Großmann, C., Tintinger, R., Zhu, J., Maurer, G.: Aqueous two-phase systems of poly (ethylene glycol) and dextran experimental results and modeling of thermodynamic properties. Fluid Phase Equilibr. 106, 111–138 (1995)Google Scholar
  25. 25.
    Cabezas, H., O’Connell, J.: A fluctuation theory model of strong electrolytes. Fluid Phase Equilibr. 30, 213–220 (1986)CrossRefGoogle Scholar
  26. 26.
    Fowler, R.H., Guggenheim, E.A.: Statistical Thermodynamics, Chap. 9. Cambridge University, Cambridge (1941)Google Scholar
  27. 27.
    Wu, Y.-T., Lin, D.-Q., Zhu, Z.-Q.: Thermodynamics of aqueous two-phase systems—The effect of polymer molecular weight on liquid–liquid equilibrium phase diagrams by the modified NRTL model. Fluid Phase Equilibr. 147, 25–43 (1998)CrossRefGoogle Scholar
  28. 28.
    Pitzer, K.S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77, 268–277 (1973)CrossRefGoogle Scholar
  29. 29.
    Zafarani-Moattar, M.T., Sadeghi, R., Hamidi, A.A.: Liquid–liquid equilibria of an aqueous two-phase system containing polyethylene glycol and sodium citrate: experiment and correlation. Fluid Phase Equilibr. 219, 149–155 (2004)CrossRefGoogle Scholar
  30. 30.
    Pazuki, G., Taghikhani, V., Vossoughi, M.: Modeling of aqueous biomolecules using a new free-volume group contribution model. Ind. Eng. Chem. Res. 48, 4109–4118 (2009)CrossRefGoogle Scholar
  31. 31.
    Ninni, L., Camargo, M., Meirelles, A.: Water activity in poly(ethylene glycol) aqueous solutions. Thermochim. Acta 328, 169–176 (1999)CrossRefGoogle Scholar
  32. 32.
    Guendouzi, M.E., Mounir, A., Dinane, A.: Water activity, osmotic and activity coefficients of aqueous solutions of Li2SO4, Na2SO4, K2SO4, (NH4)2SO4, MgSO4, MnSO4, NiSO4, CuSO4, and ZnSO4 at T = 298.15 K. J. Chem. Thermodyn. 35, 209–220 (2003)CrossRefGoogle Scholar
  33. 33.
    Zafarani-Moattar, M.T., Hamzehzadeh, S., Hosseinzadeh, S.: Phase diagrams for liquid–liquid equilibrium of ternary poly(ethylene glycol) + di-sodium tartrate aqueous system and vapor–liquid equilibrium of constituting binary aqueous systems at T = (298.15, 308.15, and 318.15) K: experiment and correlation. Fluid Phase Equilibr. 268, 142–152 (2008)CrossRefGoogle Scholar
  34. 34.
    Xu, X., Madeira, P.P., Macedo, E.A.: Representation of liquid–liquid equilibria for polymer–salt aqueous two-phase systems. Chem. Eng. Sci. 59, 1153–1159 (2004)CrossRefGoogle Scholar
  35. 35.
    Robinson, R.A., Stokes, R.H.: Electrolyte Solutions. Courier Corporation, Chelmsford (2002)Google Scholar
  36. 36.
    Winkelman, J., Kraai, G., Heeres, H.: Binary, ternary and quaternary liquid–liquid equilibria in 1-butanol, oleic acid, water and n-heptane mixtures. Fluid Phase Equilibr. 284, 71–79 (2009)CrossRefGoogle Scholar
  37. 37.
    Haghtalab, A., Joda, M.: Modification of NRTL–NRF model for computation of liquid–liquid equilibria in aqueous two-phase polymer–salt systems. Fluid Phase Equilibr. 278, 20–26 (2009)CrossRefGoogle Scholar
  38. 38.
    Alves, J.G., Brenneisen, J., Ninni, L., Meirelles, A.J., Maurer, G.: Aqueous two-phase systems of poly (ethylene glycol) and sodium citrate: experimental results and modeling. J. Chem. Eng. Data 53, 1587–1594 (2008)CrossRefGoogle Scholar
  39. 39.
    Gao, Y.-L., Peng, Q.-H., Li, Z.-C., Li, Y.-G.: Thermodynamics of ammonium sulfate—polyethylene glycol aqueous two-phase systems. Part 1. Experiment and correlation using extended UNIQUAC equation. Fluid Phase Equilibr. 63, 157–171 (1991)CrossRefGoogle Scholar
  40. 40.
    Snyder, S.M., Cole, K.D., Szlag, D.C.: Phase compositions, viscosities, and densities for aqueous two-phase systems composed of polyethylene glycol and various salts at 25 °C. J. Chem. Eng. Data 37, 268–274 (1992)CrossRefGoogle Scholar
  41. 41.
    Martins, J.O.P., de Oliveira, F.O.C., dos Reis Coimbra, J.S., da Silva, L.H.M., da Silva, M.D.C.H., do Nascimento, I.S.B.: Equilibrium phase behavior for ternary mixtures of poly(ethylene) glycol 6000 + water + sulfate salts at different temperatures. J. Chem. Eng. Data 53, 2441–2443 (2008)CrossRefGoogle Scholar
  42. 42.
    Haghtalab, A., Mokhtarani, B.: The new experimental data and a new thermodynamic model based on group contribution for correlation liquid–liquid equilibria in aqueous two-phase systems of PEG and (K2HPO4 or Na2HPO4). Fluid Phase Equilibr. 215, 151–161 (2004)CrossRefGoogle Scholar
  43. 43.
    Malpiedi, L.P., Fernández, C., Picó, G., Nerli, B.: Liquid–liquid equilibrium phase diagrams of polyethyleneglycol + sodium tartrate + water two-phase systems. J. Chem. Eng. Data 53, 1175–1178 (2008)CrossRefGoogle Scholar
  44. 44.
    Gao, Y.-L., Peng, Q.-H., Li, Z.-C., Li, Y.-G.: Thermodynamics of ammonium sulfate—polyethylene glycol aqueous two-phase systems. Part 2. Correlation and prediction using extended unifac equation. Fluid Phase Equilibr. 63, 173–182 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Mahshahr BranchIslamic Azad UniversityMahshahrIran
  2. 2.Faculty of Chemical EngineeringBabol Noshirvani University of TechnologyBabolIran

Personalised recommendations