The Study of Osmotic and Activity Coefficients for the Ternary System, (1-Ethyl-3-Methyl Imidazolium Chloride + Lithium Chloride + Water) and Their Corresponding Binary Systems at T = 298.15 K

  • Farshid Frouzesh


In this work the thermodynamic properties of an ionic liquid, 1-ethyl-3-methylimidazolium chloride ([Emim][Cl]), in aqueous lithium chloride (LiCl) solutions, have been investigated. Osmotic and activity coefficients for the ternary system ([Emim][Cl] + LiCl + H2O) and their corresponding binary mixtures at 298.15 K were measured using the “improved” isopiestic method. Using these data, the vapor pressures for these systems were determined. For the binary systems, osmotic coefficients are satisfactorily correlated using the Pitzer and modified-Pitzer models. Osmotic coefficients for the ternary systems are fitted to the Scatchard neutral-electrolyte model and corresponding mean activity coefficients for the binary and ternary systems are appraised.


Activity Vapor pressure Osmotic coefficient Pitzer Modified-Pitzer Scatchard method 


  1. 1.
    Zhang, X., Hu, D.: Performance simulation of the absorption chiller using water and ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate as the working pair. Appl. Therm. Eng. 31, 3316–3321 (2011)CrossRefGoogle Scholar
  2. 2.
    Donate, M., Rodriguez, L., Lucas, A.D., Rodriguez, J.F.: Thermodynamic evaluation of new absorbent mixtures of lithium bromide and organic salts for absorption refrigeration machines. Int. J. Refrig. 29, 30–35 (2006)CrossRefGoogle Scholar
  3. 3.
    Park, Y., Kim, J.S., Lee, H.: Density, vapor pressure, solubility, and viscosity for water + lithium bromide + lithium nitrate + 1,3-propanediol. J. Chem. Eng. Data 42, 145–148 (1997)CrossRefGoogle Scholar
  4. 4.
    Shiflett, M.B., Yokozeki, A.: Absorption cycle utilizing ionic liquid as working fluids. US Patent 20060197053A1 (2006)Google Scholar
  5. 5.
    Shiflett, M.B., Yokozeki, A.: Absorption cycle utilizing ionic liquid and water as working fluids. US Patent 20070144186A1 (2007)Google Scholar
  6. 6.
    Rogers, R.D., Seddon, K.R.: Ionic liquid solvents of the future. Science 302, 792–793 (2003)CrossRefGoogle Scholar
  7. 7.
    Seddon, K.R.: Ionic liquids: A taste of the future. Nat. Mater. 2, 363–365 (2003)CrossRefGoogle Scholar
  8. 8.
    Herold, K.E., Radermacher, R., Klein, S.A.: Absorption Chillers and Heat Pumps, 1st edn. CRC Press, Boca Raton (1996)Google Scholar
  9. 9.
    Stoecker, W.F., Jones, J.W.: Refrigeration and Air Conditioning, 1st edn. McGraw-Hill, New Dehli (1982)Google Scholar
  10. 10.
    Ziegler, F.: Recent developments and future prospects of sorption heat pump systems. Int. J. Therm. Sci. 38, 191–208 (1999)CrossRefGoogle Scholar
  11. 11.
    Kim, K.S., Park, S.Y., Choi, S., Lee, H.: Vapor pressures of the 1-butyl-3-methylimidazolium bromide + tetrafluoroborate + water systems. J. Chem. Eng. Data 49, 1550–1553 (2004)CrossRefGoogle Scholar
  12. 12.
    Wang, J.Z., Zheng, D.X., Fan, L.H., Dong, L.: Vapor pressure measurement for the water + 1,3-dimethylimidazolium chloride system and 2,2,2-trifluoroethanol + 1-ethyl-3-methylimidazolium tetrafluoroborate system. J. Chem. Eng. Data 55, 2128–2132 (2010)CrossRefGoogle Scholar
  13. 13.
    Takada, A., Imaichi, K., Kagawa, T., Takahashi, Y.: Abnormal viscosity increment observed for an ionic liquid by dissolving lithium chloride. J. Phys. Chem. B 112, 9660–9662 (2008)CrossRefGoogle Scholar
  14. 14.
    Zafarani-Moattar, M.T., Frouzesh, F.: The study of vapor–liquid equilibria of 1-ethyl-3-methyl imidazolium chloride and 1-butyl-3-methyl imidazolium chloride in lithium bromide aqueous solutions and their corresponding binary systems at 298.15 K. Calphad 40, 16–23 (2013)CrossRefGoogle Scholar
  15. 15.
    Pitzer, K.S., Mayorga, G.: Thermodynamics of electrolytes, II. Activity and osmotic coefficients with one or both ions univalent. J. Phys. Chem. 77, 2300–2308 (1973)CrossRefGoogle Scholar
  16. 16.
    Pérez-Villaseňor, F., Iglesias-Silva, G.A.: Osmotic and activity coefficients using a modified Pitzer equation for strong electrolytes 1:1 and 1:2 at 298.15 K. Ind. Eng. Chem. Res. 41, 1031–1037 (2002)CrossRefGoogle Scholar
  17. 17.
    Scatchard, G.: Osmotic coefficients and activity coefficients in mixed electrolyte solutions. J. Am. Chem. Soc. 83, 2636–2642 (1961)CrossRefGoogle Scholar
  18. 18.
    Ochs, L.R., Kabiri-Badr, M., Cabezas, H.: An improved isopiestic method to determine activities in multicomponent mixtures. AIChE J. 36, 1908–1912 (1990)CrossRefGoogle Scholar
  19. 19.
    Colin, E., Clarke, W., Glew, D.N.: Evaluation of the thermodynamic functions for aqueous sodium chloride from equilibrium and calorimetric measurements below 154 °C. J. Phys. Chem. Ref. Data 14, 489–610 (1985)CrossRefGoogle Scholar
  20. 20.
    Robinson, R.A., Stokes, R.H.: Electrolyte Solutions, 2nd edn. Butterworths, London (1965)Google Scholar
  21. 21.
    Rard, J.A., Platford, R.F., Pitzer, K.S.: Activity Coefficients in Electrolyte Solutions, 2nd edn, pp. 209–277. CRC Press, Boca Raton (1991)Google Scholar
  22. 22.
    Kell, G.S.: Density, thermal expansivity, and compressibility of liquid water from 0° to 150°. Correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale. J. Chem. Eng. Data 20, 97–105 (1975)CrossRefGoogle Scholar
  23. 23.
    Saul, A., Wagner, W.J.: International equations for the properties of ordinary water substance. J. Phys. Chem. Ref. Data 16, 893–901 (1987)CrossRefGoogle Scholar
  24. 24.
    Zafarani-Moattar, M.T., Sarmad, Sh: Osmotic and activity coefficient of 1-ethyl-3-methylimidazolium chloride in aqueous solutions of tri-potassium phosphate, potassium carbonate, and potassium chloride at 298.15 K. Calphad 35, 331–341 (2011)CrossRefGoogle Scholar
  25. 25.
    Hamer, W.J., Wu, Y.C.: Osmotic coefficients and mean activity coefficients of uni-univalent electrolytes in water at 25 °C. J. Phys. Chem. Ref. Data 1, 1047–1100 (1972)CrossRefGoogle Scholar
  26. 26.
    Archer, D.G., Wang, P.: The dielectric constant of water and Debye-Hückel limiting law slopes. J. Phys. Chem. Ref. Data 19, 371–411 (1990)CrossRefGoogle Scholar
  27. 27.
    Miller, D.G.: Activity coefficient derivatives of ternary systems based on Scatchard’s neutral electrolyte description. J. Solution Chem. 37(3), 365–375 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of Basic Science, Kermanshah BranchIslamic Azad UniversityKermanshahIran

Personalised recommendations