Journal of Solution Chemistry

, Volume 45, Issue 8, pp 1115–1129 | Cite as

Physicochemical Investigation, Fluorescence Quenching and Micellization of Ethyl 4-(2,4,5-trimethoxyphenyl)-2-methyl-5-oxo-4,5-dihydro-1H-indeno[1,2-b]pyridine-3-carboxylate (EIPC) in Organized Media

  • Salman A. Khan
  • Abdullah M. Asiri
  • Saad H. Al-Thaqafy


Ethyl 4-(2,4,5-trimethoxyphenyl)-2-methyl-5-oxo-4,5-dihydro-1H-indeno[1,2-b]pyridine-3-carboxylate (EIPC) was synthesized by a one pot method from the reaction of indane-1,3-dione with 2,4,5-trimethoxy-benzaldehyde, ethyl acetoacetate and ammonium acetate by multi component reaction. Data obtained from elemental analysis and FT–IR, 1H-NMR, 13C-NMR, and EI-MS provide a basis for a reliable chemical structure for EIPC. Electronic absorption and fluorescence spectrum of EIPC were measured in various solvents. EIPC dye shows a red shift in its emission spectrum as the polarity of the solvent increases. This fact indicates that the dipole moment of the EIPC is higher in the singlet excited state than that in the ground state. Florescence quenching of EIPC with different alcoholic solvents indicated intermolecular hydrogen bonding interactions between EIPC and the alcohol. The fluorescence spectra of EIPC were investigated in organized media composed of aqueous micellar solutions, showing that they may be used as a probe to determine the critical micelle concentration of sodium dodecyl sulfate and cetyltrimethyl ammonium bromide.


EIPC Dipole moment Fluorescence quantum yield CMC Florescence quenching 



The authors are thankful to the Chemistry Department at King Abdulaziz University for providing research facilities.


  1. 1.
    Liu, P., Zhang, P., Cao, D., Gan, L., Li, Y.: New side groups-tuned tri-phenyl-amine-based chromophores: synthesis, morphology, photophysical properties and electronic structures. J. Mol. Struct. 1050, 151–158 (2013)CrossRefGoogle Scholar
  2. 2.
    Franckevicius, M., Vaisnoras, R., Marcos, M., Serrano, J.L., Gruodis, A., Galikova, N., Gulbinas, V.: Tautomeric forms of PPI dendrimers functionalized with 4-(4′-ethoxybenzoyloxy) salicylaldehyde chromophores. Chem. Phys. 404, 2–8 (2012)CrossRefGoogle Scholar
  3. 3.
    Khan, S.A., Razvi, M.A.N., Bakry, A.H., Afzal, S.M., Asiri, A.M., El-Daly, S.A.: Microwave assisted synthesis, spectroscopic studies and non linear optical properties of bis-chromophores. Spectrochim. Acta A 137, 1100–1105 (2015)CrossRefGoogle Scholar
  4. 4.
    Lin, L., Kuo, J., Bai, H.: Silica materials recovered from photonic industrial waste powder: its extraction, modification, characterization and application. J. Hazard. Mater. 192, 255–262 (2011)Google Scholar
  5. 5.
    Zidan, M.D., Alsous, M.B., Allaf, A.W., Allahham, A., AL-Zier, A.: Optical limiting action of C60 doped poly(dimethylacetylendicarboxylate). Opt. Laser Technol. 43, 1343–1346 (2011)CrossRefGoogle Scholar
  6. 6.
    Ghaemy, M., Hassanzadeh, M., Taghavi, M., Nasab, S.M.A.: Synthesis and characterization of trifluoromethylated poly(ether–imidazole–imide)s based on unsymmetrical diamine bearing carbazole and imidazole chromophores in ionic liquids: study of electrochemical properties by using nanocomposite electrode. J. Fluorine Chem. 142, 29–40 (2012)CrossRefGoogle Scholar
  7. 7.
    Thangthong, A., Meunmart, D., Prachumrak, N., Jungsuttiwong, S., Keawin, T., Sudyoadsuk, T., Promarak, V.: Synthesis and characterization of 9,10-substituted anthracene derivatives as blue light-emitting and hole-transporting materials for electroluminescent devices. Tetrahedron 68, 1853–1861 (2012)CrossRefGoogle Scholar
  8. 8.
    Leray, A., Rouede, D., Odin, C., Grand, Y.L., Mongin, O., Desce, M.B.: Effect of the orientational disorder on the hyperpolarizability measurement of amphiphilic push–pull chromophores in Langmuir–Blodgett monolayers. Opt. Commun. 247, 213–223 (2005)CrossRefGoogle Scholar
  9. 9.
    Liu, J., Gao, W., Liu, X., Zhen, Z.: Benefits of the use of auxiliary donors in the design and preparation of NLO chromophores. Mater. Lett. 143, 333–335 (2015)CrossRefGoogle Scholar
  10. 10.
    Gupta, A., Watkins, S.E., Scully, A.D., Singh, T.B., Wilson, G.J., Rozanski, L.J., Evans, R.A.: Band-gap tuning of pendant polymers for organic light-emitting devices and photovoltaic applications. Synth. Met. 161, 856–863 (2011)CrossRefGoogle Scholar
  11. 11.
    Research, V.: Temperature dependence of dark-adapted sensitivity and light-adaptation in photoreceptors with A1 visual pigments: a comparison of frog L-cones and rods. Vision. Res. 49, 1717–1728 (2009)CrossRefGoogle Scholar
  12. 12.
    Asiri, A.M., El-Daly, S.A., Khan, S.A.: Spectral characteristics of 4-(p-N,N-dimethyl-aminophenylmethylene)-2-phenyl-5-oxazolone (DPO) in different media. Spectrochim. Acta A 95, 679–684 (2012)CrossRefGoogle Scholar
  13. 13.
    Khan, S.A., Asiri, A.M., Sharma, K.: Synthesis of steroidal thiazolidinones as antibacterial agents based on the in-vitro and quantum chemistry calculation. Med. Chem. Res. 22, 1998–2004 (2013)CrossRefGoogle Scholar
  14. 14.
    Feng, J., Ablajan, K., Sali, A.: 4-Dimethylaminopyridine-catalyzed multi-component one-pot reactions for the convenient synthesis of spiro[indoline-3,4′-pyrano[2,3-c]pyrazole] derivatives. Tetrahedron 70, 484–489 (2014)CrossRefGoogle Scholar
  15. 15.
    Rahmati, A., Ahmadi, S., Ahmadi-Varzaneh, M.: One-pot synthesis of 1,2,4,5-tetrahydro-2,4-dioxobenzo[b][1,4]diazepine and malonamide derivatives using multi-componentreactions. Tetrahedron 70, 9512–9521 (2014)CrossRefGoogle Scholar
  16. 16.
    Johannessen, S.C., Miller, W.L.: Quantum yield for the photochemical production of dissolved inorganic carbon in seawater. Mar. Chem. 76, 271–283 (2001)CrossRefGoogle Scholar
  17. 17.
    Bolton, J.R., Stefan, M.I., Shaw, P.S., Lykke, K.P.: Determination of the quantum yields of the potassium ferrioxalate and potassium iodide–iodate actinometers and a method for the calibration of radiometer detectors. J. Photochem. Photobiol. A 222, 166–169 (2011)CrossRefGoogle Scholar
  18. 18.
    Pandian, R., Naushad, E., Vijayakumar, V., Peters, G.H.: Nanjappagounder, P. M., Synthesis and crystal structures of 2-methyl-4-aryl-5-oxo-5H-indeno [1,2-b] pyridine carboxylate derivatives. Chem. Cent. J. 8, 1–7 (2014)CrossRefGoogle Scholar
  19. 19.
    Chen, R., Zhao, G., Yang, X., Jiang, X., Liu, J., Tian, H., Gao, Y., Liu, X., Han, K., Sun, M., Sun, L.: Photoinduced intramolecular charge–transfer state in thiophene-p-conjugated donor–acceptor molecules. J. Mol. Struct. 876, 102–109 (2008)CrossRefGoogle Scholar
  20. 20.
    Zhang, F., Zhang, Q., Wang, W., Zhu, C., Wang, X.: The application and comparison of several chemometric methods of excitation–emission matrix spectra in studying the interactions of metal complexes with DNA. Anal. Chim. Acta 599, 199–208 (2007)CrossRefGoogle Scholar
  21. 21.
    Jozefowicz, M., Milart, P., Heldt, J.R.: Determination of ground and excited state dipole moments of 4,5′-diamino[1,1′:3′,1″-terphenyl]-4′,6′-dicarbonitrile using solvatochromic method and quantum-chemical calculations. Spectrochim. Acta A 74, 959–963 (2009)CrossRefGoogle Scholar
  22. 22.
    Ma, X., Jiao, J., Yang, J., Huang, X., Cheng, Y., Zhu, C.: Large stokes shift chiral polymers containing (R, R)-salen-based binuclear boron complex: synthesis, characterization, and fluorescence properties. Polymer 53, 3894–3899 (2012)CrossRefGoogle Scholar
  23. 23.
    Khan, S.A., Asiri, A.M.: Physicochemical investigation of 2,4,5-trimethoxybenzylidene propanedinitrile (TMPN) dye as fluorescence off-on probe for critical micelle concentration (CMC) of SDS and CTAB. J Fluoresc. 25, 1749–1755 (2015)CrossRefGoogle Scholar
  24. 24.
    Tunuli, M.S., Rauf, M.A.: Farhataziz: dimroth’s E T(30) as parameters of solvent polarity: A caveat. J. Photochem. 24, 411–413 (1984)CrossRefGoogle Scholar
  25. 25.
    Meneses-Nava, M.A., Barbosa-Garcia, O., Diaz-Torres, L.A., Chavez-Cerda, S., Torres-Cisneros, M., King, T.A.: Effect of PMMA impregnation on the fluorescence quantum yield of sol–gel glasses doped with quinine sulfate. Opt. Mater. 17, 415–418 (2001)CrossRefGoogle Scholar
  26. 26.
    Xu, Z., Bai, G., Dong, C.: Spectral and photophysical properties of intramolecular charge transfer fluorescence probe: 4-dimethylamino-2,5-dihydroxychalcone. Spectrochim. Acta A 62, 987–990 (2005)CrossRefGoogle Scholar
  27. 27.
    Rurack, K., Dekhtyar, M.L., Bricks, J.L., Resch-Genger, U., Rettig, W.: Quantum yield switching of fluorescence by selectively bridging single and double bonds in chalcones: involvement of two different types of conical intersections. J. Phys. Chem. A 103, 9626–9635 (1999)CrossRefGoogle Scholar
  28. 28.
    Mehta, S.K., Bhawna, : Significant effect of polar head group of surfactants on the solubilization of Zein in mixed micellar (SDS–DDAB) media. Colloids Surf. B 81, 74–80 (2010)CrossRefGoogle Scholar
  29. 29.
    Lopez-Luke, T., Rosa, E.D., Solis, D., Salas, P., Angeles-Chavez, C., Montoya, A., Diaz-Torres, L.A., Bribiesca, S.: Effect of the CTAB concentration on the upconversion emission of ZrO2:Er3+ nanocrystals. Opt. Mater. 29, 31–37 (2006)CrossRefGoogle Scholar
  30. 30.
    Liu, Y.H., Li, P.: Excited-state hydrogen bonding effect on dynamic fluorescence of coumarin 102 chromophore in solution: a time- resolved fluorescence and theoretical study. J. Lumin. 131, 2116–2120 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Salman A. Khan
    • 1
  • Abdullah M. Asiri
    • 1
    • 2
  • Saad H. Al-Thaqafy
    • 1
  1. 1.Chemistry Department, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Center of Excellence for Advanced Materials Research (CEAMR)King Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations