Journal of Solution Chemistry

, Volume 45, Issue 6, pp 947–969 | Cite as

Studies of Viscosity Coefficient and Expansivity Properties of Aqueous Solutions of Ethylene Glycol and Polyethylene Glycols at 293.15, 298.15 and 303.15 K and at Ambient Pressure

  • Pankaj D. Patil
  • Vasim R. Shaikh
  • Gaurav R. Gupta
  • Dilip G. Hundiwale
  • Amulrao U. Borse
  • Kesharsingh J. Patil


The relative viscosity coefficient \( \left( {{\raise0.7ex\hbox{$\eta $} \!\mathord{\left/ {\vphantom {\eta {\eta_{0} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${\eta_{0} }$}}} \right) \) and volumetric properties of mixtures of water with ethylene glycol (EG) and polyethylene glycols (PEGs) of molecular weights 400, 1000 and 4000 g·mol–1 (PEG-400, PEG-1000 and PEG-4000) in the concentration range of ~0.01 to ~0.5 mol·kg−1, or up to 0.1 volume fraction (\( \phi_{2} \)), have been measured at three temperatures (293.15, 298.15 and 303.15 K) and at ambient pressure. The data were subjected to analysis by applications of the Jone–Dole equation, Vand’s equation with the viscosity parameters B and D, particle interaction coefficients (Q), Einstein–Simha factor (\( \nu \)), and hydration number (h) were determined at different temperatures. Using the density data, the limiting apparent molar volumes (\( \phi_{\text{V}}^{0} \)) at different temperatures, and the limiting apparent molar expansivity (\( \phi_{\text{E}}^{0} \)) at 298.15 K, were obtained. Positive values of the viscosity B coefficients were observed for all the studied systems; these decrease with increase in temperature, while the D coefficients are also necessary to represent the data, showing specific behavior depending upon the chain length of the polymeric molecules. The larger viscosity increments in excess of the Einstein–Simha volume contributions, and decreasing hydration numbers with increasing temperature, are attributed to the water structure-making effect, solute–solvent hydrogen bond interaction and the presence of hydrophobic interaction between the chain segments of the polymeric molecules. The resulting D coefficients and the virial coefficients are examined from the point of view of solute–solute association.


Aqueous solutions of glycols Apparent molar expansivity Viscosity B and D coefficients Vand’s theory and particle interaction coefficients 



P. D. P. acknowledges the University Grants Commission, New Delhi (India) for providing financial assistance through an UGC-BSR Fellowship for Science Meritorious Students.


  1. 1.
    Harris, F.J. (ed.): Polyethylene Glycol Chemistry. Plenum Press, New York (1992)Google Scholar
  2. 2.
    Molyneux, P.: Water-A Comprehensive Treatise, vol. IV. Plenum Press, New York (1974)Google Scholar
  3. 3.
    Levi, D.W., Scherer, P.C., Washimi, K., Hunter, W.L.: Viscosity of polyvinyl alcohol. J. Appl. Polym. Sci. 1, 127–129 (1959)CrossRefGoogle Scholar
  4. 4.
    Wang, J., Li, L., Zhu, Y., Liu, P., Guo, X.: Hydrogels assembled by inclusion complexation of poly(ethylene glycol) with alpha-cyclodextrin. Asia Pac. J. Chem. Eng. 4, 544–550 (2009)CrossRefGoogle Scholar
  5. 5.
    Fleury, G., Schlatter, G., Brochon, C., Travelet, C., Lapp, A., Lindner, P., Hadziioannou, G.: Topological polymer networks with sliding cross-link points: the “sliding gels”. Relationship between their molecular structure and the viscoelastic as well as the swelling properties. Macromolecules 40, 535–543 (2007)CrossRefGoogle Scholar
  6. 6.
    Mahadevan, H., Hall, C.K.: Experimental analysis of protein precipitation by polyethylene glycol and comparison with theory. Fluid Phase Equilib. 78, 297–321 (1992)CrossRefGoogle Scholar
  7. 7.
    Fauteux, D., Massucco, A., McLin, M., Van Buren, M., Shi, J.: Lithium polymer electrolyte rechargeable battery. Electrochim. Acta 40, 2185–2190 (1995)CrossRefGoogle Scholar
  8. 8.
    Stephan, A.M.: Review on gel polymer electrolytes for lithium batteries. Eur. Polym. J. 42, 21–42 (2006)CrossRefGoogle Scholar
  9. 9.
    Khullar, P., Singh, V., Mahal, A., Kumar, H., Kaur, G., Bakshi, M.S.: Block copolymer micelles as nanoreactors for self-assembled morphologies of gold nanoparticles. J. Phys. Chem. B 117, 3028–3039 (2013)CrossRefGoogle Scholar
  10. 10.
    Singh, V., Khullar, P., Dave, P.N., Kaura, A., Bakshi, M.S., Kaur, G.: pH and thermo-responsive tetronic micelles for the synthesis of gold nanoparticles: effect of physiochemical aspects of tetronics. Phys. Chem. Chem. Phys. 16, 4728–4739 (2014)CrossRefGoogle Scholar
  11. 11.
    Kushare, S.K., Terdale, S.S., Dagade, D.H., Patil, K.J.: Compressibility and volumetric studies of polyethylene-glycols in aqueous, methanolic, and benzene solutions at T = 298.15 K. J. Chem. Thermodyn. 39, 1125–1131 (2007)CrossRefGoogle Scholar
  12. 12.
    Ayranci, E., Sahin, M.: Interactions of polyethylene glycols with water studied by measurements of density and sound velocity. J. Chem. Thermodyn. 40, 1200–1207 (2008)CrossRefGoogle Scholar
  13. 13.
    Hanke, E., Schulz, U., Kaatze, U.: Molecular interactions in poly(ethylene glycol)–water mixtures at various temperatures: density and isentropic compressibility study. Chem. Phys. Chem. 8, 553–560 (2007)Google Scholar
  14. 14.
    Douhéret, G., Davis, M.I., Carlos, J., Reis, J.C.R., Blandamer, M.J.: Isentropic compressibilities—experimental origin and the quest for their rigorous estimation in thermodynamically ideal liquid mixtures. Chem. Phys. Chem. 2, 148–161 (2001)Google Scholar
  15. 15.
    Sagawa, N., Shikata, T.: Hydration behavior of poly(ethylene oxide)s in aqueous solution as studied by near-infrared spectroscopic techniques. J. Phys. Chem. B 117, 10883–10888 (2013)CrossRefGoogle Scholar
  16. 16.
    Kushare, S.K., Shaikh, V.R., Kolhapurkar, R.R., Terdale, S.S., Dagade, D.H., Patil, K.J.: Thermodynamics of aqueous polyethylene-glycol (PEG) solutions at 298.15 K: activity, activity coefficients and application of molecular theories. J. Mol. Liq. 187, 129–136 (2013)CrossRefGoogle Scholar
  17. 17.
    Blandamer, M.J., Fox, M.F., Powell, E., Stafford, J.W.: A viscometric study of poly(ethylene oxide) in t-butyl alcohol/water mixtures. Makromol. Chemie 124, 222–231 (1969)CrossRefGoogle Scholar
  18. 18.
    Teramoto, A., Kusamizu, S., Tanaka, H., Murakami, Y., Fujita, H.: Viscosities of poly(ethylene oxide)–water systems over the complete range of composition. Makromol. Chemie 90, 78–90 (1966)CrossRefGoogle Scholar
  19. 19.
    Hayduk, W., Malik, V.K.: Density, viscosity, and carbon dioxide solubility and diffusivity in aqueous ethylene glycol solutions. J. Chem. Eng. Data 16, 143–146 (1971)CrossRefGoogle Scholar
  20. 20.
    Zhang, N., Zhang, J., Zhang, Y., Bai, J., Huo, T., Wei, X.: Excess molar volumes and viscosities of poly(ethylene glycol) 300+ water at different temperatures. Fluid Phase Equilib. 313, 7–10 (2012)CrossRefGoogle Scholar
  21. 21.
    Ebrahimi, S., Sadeghi, R.: Density, speed of sound, and viscosity of some binary and ternary aqueous polymer solutions at different temperatures. J. Chem. Eng. Data 60, 3132–3147 (2015)CrossRefGoogle Scholar
  22. 22.
    Hammes, G.G., Lewis, T.B.: Ultrasonic absorption in aqueous polyethylene glycol solutions. J. Phys. Chem. 70, 1610–1614 (1966)CrossRefGoogle Scholar
  23. 23.
    Hammes, G.G., Schimme, P.R.: An investigation of water-urea and water-urea-polyethylene glycol interactions. J. Am. Chem. Soc. 89, 442–446 (1967)CrossRefGoogle Scholar
  24. 24.
    Stokes, S., Mills, R.: Viscosity of electrolytes and relates properties. International encyclopedia of physical chemistry and chemical physics. Pergamon Press, New York (1965)Google Scholar
  25. 25.
    Jones, G., Dole, M.: The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J. Am. Chem. Soc. 51, 2950–2964 (1929)CrossRefGoogle Scholar
  26. 26.
    Vand, V.: Viscosity of solutions and suspensions. I. J. Phys. Chem. 52, 277–299 (1929)CrossRefGoogle Scholar
  27. 27.
    Huggins, M.L.: The viscosity of dilute solutions of long-chain molecules. IV. Dependence on concentration. J. Am. Chem. Soc. 64, 2716–2718 (1942)CrossRefGoogle Scholar
  28. 28.
    Marcus, Y.: Effect of ions on the structure of water: structure making and breaking. Chem. Rev. 109, 1346–1370 (2009)CrossRefGoogle Scholar
  29. 29.
    Jenkins, H.D., Marcus, Y.: Viscosity B-coefficients of ions in solution. Chem. Rev. 95, 2695–2724 (1995)CrossRefGoogle Scholar
  30. 30.
    Einstein, A.: Eine neue bestimmung der moleküdimensionen. Ann. Phys. 19, 289–306 (1906)CrossRefGoogle Scholar
  31. 31.
    Einstein, A.: Berichtigung zu meiner arbeit: eine neue bestimmung der moleküldimensionen. Ann. Phys. 34, 591–592 (1911)CrossRefGoogle Scholar
  32. 32.
    Simha, R.: The influence of Brownian movement on the viscosity of solutions. J. Phys. Chem. 44, 25–34 (1940)CrossRefGoogle Scholar
  33. 33.
    Herskovits, T.T., Kelly, T.M.: Viscosity studies of aqueous solutions of alcohols, ureas, and amides. J. Phys. Chem. 77, 381–388 (1973)CrossRefGoogle Scholar
  34. 34.
    Thomas, D.G.: Transport characteristics of suspension: VIII. A note on the viscosity Newtonian suspension of uniform spherical particles. J. Colloid. Sci. 20, 267–277 (1965)CrossRefGoogle Scholar
  35. 35.
    Kell, G.S.: Precise representation of volume properties of water at one atmosphere. J. Chem. Eng. Data 12, 66–69 (1967)CrossRefGoogle Scholar
  36. 36.
    Shaikh, V.R., Dagade, D.H., Hundiwale, D.G., Patil, K.J.: Volumetric studies of aqueous solutions of local anesthetical drug compounds [hydrochlorides of procaine (PC HCl), lidocaine (LC HCl) and tetracaine (TC HCl)] at 298.15 K. J. Mol. Liq. 164, 239–242 (2011)CrossRefGoogle Scholar
  37. 37.
    Patil, R.S., Shaikh, V.R., Patil, P.D., Borse, A.U., Patil, K.J.: Volumetric properties of alkyltrimethylammonium bromides in aqueous solutions. J. Chem. Eng. Data 61, 195–206 (2016)CrossRefGoogle Scholar
  38. 38.
    Vaslow, F.: The apparent molal volumes of the alkali metal chlorides in aqueous solution and evidence for salt-induced structure transitions. J. Phys. Chem. 70, 363–370 (1966)Google Scholar
  39. 39.
    Fortier, J.L., Leduce, P.A., Desnoyers, J.E.: Thermodynamic properties of alkali halides. II. Enthalpies of dilution and heat capacities in water at 25°C. J. Solution Chem. 3, 2286–2294 (1974)Google Scholar
  40. 40.
    Garrod, J.E., Herrington, T.M.: Apparent molar volumes and temperatures of maximum density of dilute aqueous sucrose solutions. J. Phys. Chem. 74, 363–370 (1970)CrossRefGoogle Scholar
  41. 41.
    Kaulgud, M.V., Dhondge, S.S.: Apparent molal volumes and apparent molal compressibilities of some carbohydrates in dilute aqueous solutions at different temperatures. Indian J. Chem. 27A, 6–11 (1988)Google Scholar
  42. 42.
    Desnoyer, J.E., Perron, G.: The viscosity of aqueous solutions of alkali and tetraalkylammonium halides at 25°C. J. Solution Chem. 1, 199–212 (1972)CrossRefGoogle Scholar
  43. 43.
    Kaminsky, M.: Experimentelle untersuchungen über die konxentrationsund temperaturabhangigkeit der zähigkeit wässriger lösungen starker electrolyte. I. Mitteilang: KJ–, NH4Cl– und Na2SO4–lösungen. Z. Phys. Chem. 5, 154–191 (1955)CrossRefGoogle Scholar
  44. 44.
    Jones, G., Talley, S.K.: The viscosity of aqueous solutions as a function of the concentration. J. Am. Chem. Soc. 55, 624–642 (1933)CrossRefGoogle Scholar
  45. 45.
    Nakajima, T., Komatsu, T., Nakagawa, T.: Apparent molal volumes and adiabatic compressibilities of n-alkananols and a,ω-alkane diols in dilute solutions at 5, 25 and 45°C. I. Apparent molal volumes. Bull. Chem. Soc. Jpn. 48, 783–787 (1975)CrossRefGoogle Scholar
  46. 46.
    Alexander, D.M., Moy, D.C.: The viscosity of dilute aqueous solutions of aliphatic alcohols. Aust. J. Chem. 35, 365–368 (1982)CrossRefGoogle Scholar
  47. 47.
    Nightingale, E.R.: In: Conway, B.E., Barradas, R.G. (eds.) Chemical Physics of Ionic Solutions. John Wiley, New York (1965)Google Scholar
  48. 48.
    Kay, R.L., Vituccio, T., Zawoyski, C., Evans, D.F.: Viscosity B coefficients for tetraalkylammonium halides. J. Phys. Chem. 70, 2336–2341 (1966)CrossRefGoogle Scholar
  49. 49.
    Dagade, D.H., Patil, S.D., Patil, K.J.: Volumetric and viscosity studies of aqueous solutions of the potassium salt of penicillin-G at different temperatures and at ambient pressure. J. Chem. Eng. Data 52, 2177–2181 (2007)CrossRefGoogle Scholar
  50. 50.
    Dagade, D., Pawar, R., Patil, K.J.: Viscosity behavior of 18-crown-6 in aqueous and carbon tetrachloride solutions at different temperatures and at ambient pressure. J. Chem. Eng. Data 49, 341–346 (2004)CrossRefGoogle Scholar
  51. 51.
    Edward, J.T.: Molecular volumes and the Stokes-Einstein equation. J. Chem. Educ. 47, 261–270 (1970)CrossRefGoogle Scholar
  52. 52.
    Nemethy, G.: Molecular interactions in hydrogen-bonding solvents. COMMENTRII 2, 1–24 (1972)Google Scholar
  53. 53.
    Franks, F., Ives, D.J.G.: The structural properties of alcohol water mixtures. Quart. Rev. 20, 1–44 (1966)CrossRefGoogle Scholar
  54. 54.
    Kaulgud, M.V., Patil, K.J.: Volumetric and isentropic compressibility behavior of aqueous amine solutions. I. J. Phys. Chem. 78, 714–717 (1974)CrossRefGoogle Scholar
  55. 55.
    Gurney, R.W.: Ionic Processes in Solutions. McGraw Hill, New York (1954)Google Scholar
  56. 56.
    Desnoyers, J.E., Arel, M.: Apparent molal volumes of n-alkylamine hydrobromides in water at 25°C: hydrophobic hydration and volume changes. Can. J. Chem. 45, 359–362 (1967)CrossRefGoogle Scholar
  57. 57.
    Friedman, H.L., Krishnan, C.V.: Water—A Comprehensive Treatise, vol. III. Plenum Press, New York (1973)Google Scholar
  58. 58.
    Patel, R.I., Patil, K.J., Kaulgud, M.V.: Viscosity behavior of aqueous solutions of amines. Z. Phys. Chem. 86, 67–74 (1973)CrossRefGoogle Scholar
  59. 59.
    Purcell, E.M.: Life at low Reynolds number. Am. J. Phys. 45, 3–11 (1977)CrossRefGoogle Scholar
  60. 60.
    Tanford, C.: Hydrophobic free energy, micelle formation and the association of proteins with amphiphiles. J. Mol. Biol. 67, 59–74 (1972)CrossRefGoogle Scholar
  61. 61.
    Franks, F.: Water: A Matrix of Life, 2nd edn. Royal Society of Chemistry, Cambridge (2000)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Pankaj D. Patil
    • 1
  • Vasim R. Shaikh
    • 1
  • Gaurav R. Gupta
    • 1
  • Dilip G. Hundiwale
    • 1
  • Amulrao U. Borse
    • 1
  • Kesharsingh J. Patil
    • 1
  1. 1.School of Chemical SciencesNorth Maharashtra UniversityJalgaonIndia

Personalised recommendations