Journal of Solution Chemistry

, Volume 45, Issue 6, pp 907–919 | Cite as

A Bis-Quinoline Appended Azobenzene Based Naked Eye Sensor for Selective Detection of Cd2+ Ion

  • Elango Hrishikesan
  • Rangasamy Manjunath
  • Palaninathan Kannan


A new azobenzene chromophore (AZQU), appended with a bis-quinoline unit as a turn-on chemosensor for selective detection of Cd2+ ions, has been designed and synthesized. The fluorescent receptor AZQU has an excellent selectivity and sensitivity towards Cd2+ ions over other metal ions in CH3CN:H2O (80:20, v/v) solution. AZQU is red colored and non-fluorescent in the absence of Cd2+ ions, but upon addition of Cd2+ ions it turns colorless with appreciable fluorescence. This “off–on” type signaling behavior is attributed to the CHEF (chelation-enhanced fluorescence) effect of the quinoline unit and the change in color from red to yellow occurs by an ICT process with Cd2+. The association constant for AZQU + Cd2+ was calculated to be 1.68 × 105 L·mol−1 with binding in the 1:1 stoichiometric ratio.


Azobenzene Chemosensor 8-Hydroxyquinoline Naked eye sensor 



The author E.H thanks thank the Department of Science and Technology (DST), India for financial support (DST-SR/S1/PC-07/2010). The authors P.K and R.M are thankful to the Anna Centenary Research Fellowship (ACRF), Anna University, Chennai (CR/ACRF/2013/38). The instrumentation facility was provided to our department through DST-FIST and UGC-DRS from New Delhi.

Supplementary material

10953_2016_473_MOESM1_ESM.doc (2.2 mb)
Characterization data of synthesized compounds and additional spectroscopic data of the receptor AZQU are available as electronic supplementary data. (DOC 2283 kb)


  1. 1.
    Resendiz, M.J., Noveron, J.C., Disteldorf, H., Fischer, S., Stang, P.J.: A self-assembled supramolecular optical sensor for Ni(II), Cd(II), and Cr(III). Org. Lett. 6, 651–653 (2004)CrossRefGoogle Scholar
  2. 2.
    Mancin, F., Rampazzo, E., Tecilla, P., Tonellato, U.: Self-assembled fluorescent chemosensors. Chem. A Eur. J. 12, 1844–1854 (2006)CrossRefGoogle Scholar
  3. 3.
    Jeong, Y., Yoon, J.: Recent progress on fluorescent chemosensors for metal ions. Inorg. Chim. Acta 381, 2–14 (2012)CrossRefGoogle Scholar
  4. 4.
    Lee, H.G., Lee, J.H., Jang, S.P., Hwang, I.H., Kim, S.J., Kim, Y., Harrison, R.G.: Zinc selective chemosensors based on the flexible dipicolylamine and quinoline. Inorg. Chim. Acta 394, 542–551 (2013)CrossRefGoogle Scholar
  5. 5.
    Cao, S., Li, H., Chen, T., Chen, J.: A polyaza macrocycle ligand bearing anthracenyl fluorophores for selective signaling of Zn(II) in aqueous solution. J. Solution Chem. 38, 1520–1527 (2009)CrossRefGoogle Scholar
  6. 6.
    Tian, M., Ihmels, H.: Selective ratiometric detection of mercury(II) ions in water with an acridizinium-based fluorescent probe. Chem. Commun. 22, 3175–3177 (2009)CrossRefGoogle Scholar
  7. 7.
    Georgopoulos, A.G., Roy, M.J., Yonone-Lioy, R.E., Opiekun, P.J., Lioy, P.: Environmental copper: its dynamics and human exposure issues. J. Toxicol. Environ. Health Part B Crit. Rev. 4, 341–394 (2001)CrossRefGoogle Scholar
  8. 8.
    Robards, K., Worsfold, P.: Cadmium: toxicology and analysis. A Rev. Anal. 116, 549–568 (1991)Google Scholar
  9. 9.
    Kim, H.N., Ren, W.X., Kim, J.S., Yoon, J.: Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem. Soc. Rev. 41, 3210–3244 (2012)CrossRefGoogle Scholar
  10. 10.
    Peng, X., Du, J., Fan, J., Wang, J., Wu, Y., Zhao, J., Xu, T.: A selective fluorescent sensor for imaging Cd2+ in living cells. J. Am. Chem. S. 129, 1500–1501 (2007)CrossRefGoogle Scholar
  11. 11.
    De Silva, A.P., Gunaratne, H.N., Gunnlaugsson, T., Huxley, A.J., McCoy, C.P., Rademacher, J.T., Rice, T.E.: Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 97, 1515–1566 (1997)CrossRefGoogle Scholar
  12. 12.
    Gunnlaugsson, T., Leonard, J.P.: H+, Na+ and K+ modulated lanthanide luminescent switching of Tb(III) based cyclen aromatic diaza-crown ether conjugates in water. Chem. Commun. 19, 2424–2425 (2003)CrossRefGoogle Scholar
  13. 13.
    Manjunath, R., Hrishikesan, E., Kannan, P.: A selective colorimetric and fluorescent sensor for Al3+ ion and its application to cellular imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 140, 509–515 (2015)CrossRefGoogle Scholar
  14. 14.
    Cheng, C.C., Chen, Z.S., Wu, C.Y., Lin, C.C., Yang, C.R., Yen, Y.P.: Azo dyes featuring a pyrene unit: new selective chromogenic and fluorogenic chemodosimeters for Hg(II). Sens. Actuators B Chem. 142, 280–287 (2009)CrossRefGoogle Scholar
  15. 15.
    Das, P., Ghosh, A., Das, A.: Unusual specificity of a receptor for Nd3+ among other lanthanide ions for selective colorimetric recognition. Inorg. Chem. 49, 6909–6916 (2010)CrossRefGoogle Scholar
  16. 16.
    Park, H.M., Oh, B.N., Kim, J.H., Qiong, W., Hwang, I.H., Jung, K.D., Kim, J.: Fluorescent chemosensor based-on naphthol–quinoline for selective detection of aluminum ions. Tetrahedron Lett. 52, 5581–5584 (2011)CrossRefGoogle Scholar
  17. 17.
    Xue, L., Liu, Q., Jiang, H.: Ratiometric Zn2+ fluorescent sensor and new approach for sensing Cd2+ by ratiometric displacement. Org. Lett. 11, 3454–3457 (2009)CrossRefGoogle Scholar
  18. 18.
    Liu, Y., Zhang, N., Chen, Y., Wang, L.H.: Fluorescence sensing and binding behavior of aminobenzenesulfonamidoquinolino–β-cyclodextrin to Zn2+. Org. Lett. 9, 315–318 (2007)CrossRefGoogle Scholar
  19. 19.
    Hao, E., Meng, T., Zhang, M., Pang, W., Zhou, Y., Jiao, L.: Solvent dependent fluorescent properties of a 1,2,3-triazole linked 8-hydroxyquinoline chemosensor: tunable detection from zinc(II) to iron(III) in the CH3CN/H2O system. J. Phys. Chem. A 115, 8234–8241 (2011)CrossRefGoogle Scholar
  20. 20.
    Hrishikesan, E., Saravanan, C., Kannan, P.: Bis-triazole-appended azobenzene chromophore for selective sensing of copper(II) ion. Ind. Eng. Chem. Res. 50, 8225–8229 (2011)CrossRefGoogle Scholar
  21. 21.
    Hrishikesan, E., Kannan, P.: Azobenzene chemosensor based on nitrogen chelator for the detection of Cu(II) ion in aqueous medium. Inorg. Chem. Commun. 37, 21–25 (2013)CrossRefGoogle Scholar
  22. 22.
    Perrin, D.D., Armarego, W.L.F., Perrin, D.R.: Purification of Laboratory Chemicals, 3rd edn. Pergamon Press, New York (1988)Google Scholar
  23. 23.
    Gunnlaugsson, T., Leonard, J.P., Murray, N.S.: Highly selective colorimetric naked-eye Cu(II) detection using an azobenzene chemosensor. Org. Lett. 6, 1557–1560 (2004)CrossRefGoogle Scholar
  24. 24.
    Huang, J., Xu, Y., Qian, X.: A colorimetric sensor for Cu2+ in aqueous solution based on metal ion-induced deprotonation: deprotonation/protonation mediated by Cu2+–ligand interactions. J. Chem. Soc. Dalton Trans. 10, 1761–1766 (2009)CrossRefGoogle Scholar
  25. 25.
    Hirose, K.: A practical guide for the determination of binding constants. J. Incl. Phenom. Macrocycl. Chem. 39, 193–209 (2001)CrossRefGoogle Scholar
  26. 26.
    Benesi, H.A., Hildebrand, J.H.: A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 71, 2703–2707 (1949)CrossRefGoogle Scholar
  27. 27.
    Tian, D., Yan, H., Li, H.: A selective fluorescent probe of Hg2+ based on triazole-linked 8-oxyquinoline calix [4] arene by click chemistry. Supramol. Chem. 22, 249–255 (2010)CrossRefGoogle Scholar
  28. 28.
    Liu, J., Wu, K., Li, X., Han, Y., Xia, M.: A water soluble fluorescent sensor for the reversible detection of tin(IV) ion and phosphate anion. RSC Adv. 3, 8924–8928 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Elango Hrishikesan
    • 1
  • Rangasamy Manjunath
    • 1
  • Palaninathan Kannan
    • 1
  1. 1.Department of ChemistryAnna UniversityChennaiIndia

Personalised recommendations