Journal of Solution Chemistry

, Volume 45, Issue 4, pp 560–573 | Cite as

Solution Thermophysics of l-Ascorbic Acid in Aqueous Tetrabutylammonium Hydrogen Sulfate

  • Abhijit Sarkar
  • Dipu Kumar Mishra
  • Biswajit Sinha


The densities and viscosities of l-ascorbic acid (vitamin C) in aqueous tetrabutylammonium hydrogen sulfate (Bu4NHSO4) solutions at several different concentrations of Bu4NHSO4 (\( m_{{{\text{Bu}}_{4} {\text{NHSO}}_{4} }} \) = 0.000, 0.005, 0.010, 0.015 and 0.020 mol·kg−1) were determined at T = (298.15–318.15) K under atmospheric pressure. Using these experimental data, values of the apparent molar volume (\( \phi_{V} \)), standard partial molar volume (\( \phi_{V}^{ 0} \)), the slope (\( S_{V}^{ *} \)), standard isobaric partial molar expansibility (\( \phi_{E}^{ 0} \)) and its temperature derivative \( ({{\partial \phi_{E}^{ 0} } \mathord{\left/ {\vphantom {{\partial \phi_{E}^{ 0} } {\partial T}}} \right. \kern-0pt} {\partial T}})_{p} \), the viscosity B-coefficient and solvation number (\( S_{\text{n}} \)), etc., were determined. Viscosity B-coefficients were further utilized to obtain the Gibbs energies of activation of viscous flow per mole of the solvents (\( \Delta \mu_{ 1}^{ 0\ne } \)) and of the solute (\( \Delta \mu_{ 2}^{ 0\ne } \)). The effects of molality, solute structure and temperature on all these parameters were analyzed in term of ion–ion and ion–solvent interactions, which revealed that the solutions are characterized predominantly by ion–solvent interactions and l-ascorbic acid behaves as a long-range structure maker.


Standard partial molar volumes Viscosity B-coefficients l-ascorbic acid Aqueous tetrabutylammonium hydrogen sulfate solutions 



The authors are grateful to the Departmental Special Assistance Scheme under the University Grants Commission, New Delhi (DRS-SAP-III, No. F540/12/DRS/2013) for financial support. One of the authors (D. K. M) is also thankful to UGC, India for granting him an UGC BSR Research Fellowship in Science (Ref. No.: 4-1/2008 (BSR)). This study was funded by the Departmental Special Assistance Scheme under the University Grants Commission, New Delhi (DRS-SAP-III, No. F540/12/DRS/2013) and we thank them for financial support.

Supplementary material

10953_2016_454_MOESM1_ESM.docx (154 kb)
Supplementary material 1 (DOCX 154 kb)


  1. 1.
    Almasi, M., Sarkoohaki, B.: Density and viscosities of binary mixtures of cyclohexanone and 2 alkanols. J. Chem. Eng. Data 57, 309–316 (2012)CrossRefGoogle Scholar
  2. 2.
    Koga, Y.: Solution Thermodynamics and Its Application to Aqueous Solutions: a Differential Approach, 1st edn. Elsevier, New York (2007)Google Scholar
  3. 3.
    Marcus, Y.: Ions in Water and Biophysical Implications: from Chaos to Cosmos. Springer, New York (2012)CrossRefGoogle Scholar
  4. 4.
    Jiang, X., Zhu, C., Ma, Y.: Volumetric and viscometric studies of amino acids in l-ascorbic acid aqueous solutions at T = (293.15 to 323.15) K. J. Chem. Thermodyn. 71, 50–63 (2014)CrossRefGoogle Scholar
  5. 5.
    Sarkar, A., Sinha, B.: Solution thermodynamics of aqueous nicotinic acid solutions in presence of tetrabutylammonium hydrogen sulphate. J. Serb. Chem. Soc. 78, 1225–1240 (2013)CrossRefGoogle Scholar
  6. 6.
    Blanco, L.H., Vargas, E.F.: Apparent molar volumes of symetric and asymetric tetraalkylammonium salts in dilute aqueous solutions. J. Solution Chem. 35, 21–28 (2006)CrossRefGoogle Scholar
  7. 7.
    Jain, P., Sharma, S., Shukla, R.K.: Density and viscosity of tetrabutyl ammonium hydrogen sulphate and tetrabutyl ammonium chloride salts in aqueous and methanolic solution at 303 K. Phys. Chem. Liq. 51, 547–566 (2013)CrossRefGoogle Scholar
  8. 8.
    Jang, X., Zhu, C., Ma, Y.: Densities and viscosities of erythritol, xylitol and mannitol in l-ascorbic acid aqueous solutions at T = (293.15 to 323.15) K. J. Chem. Eng. Data 58, 2970–2978 (2013)CrossRefGoogle Scholar
  9. 9.
    Banipal, T.S., Singh, H., Banipal, P.K., Singh, V.: Volumetric and viscometric studies on l-ascorbic acid, nicotinic acid, thiamine hydrochloride and pyridoxine hydrochloride in water at temperatures (288.15–318.15) K at atmospheric pressure. Thermochim. Acta 553, 31–39 (2013)CrossRefGoogle Scholar
  10. 10.
    Roy, M.N., Sarkar, K., Sinha, A.: Physico-chemical studies of vitamin C in aqueous 1-propanol: manifestation of molecular interactions. J. Solution Chem. 43, 2212–2223 (2014)CrossRefGoogle Scholar
  11. 11.
    Shoemaker, D.P., Garland, C.W.: Experiments in Physical Chemistry, pp. 131–138. McGraw-Hill, New York (1967)Google Scholar
  12. 12.
    Marsh, K.N.: Recommended Reference Materials for the Realization of Physicochemical Properties. Blackwell Scientific Publications, Oxford (1987)Google Scholar
  13. 13.
    Dean, J.A.: Lange’s Handbook of Chemistry, 11th edn. McGraw-Hill, New York (1973)Google Scholar
  14. 14.
    Sarkar, B.K., Choudhury, A., Sinha, B.: Excess molar volumes, excess viscosities and ultrasonic speeds of sound of binary mixtures of 1,2-dimethoxyethane with some aromatic liquids at 298.15 K. J. Solution Chem. 41, 53–74 (2012)CrossRefGoogle Scholar
  15. 15.
    Sinha, B., Pradhan, R., Shah, S., Brahman, D., Sarkar, A.: Thermophysical properties of binary mixtures of N,N-dimethylformamide with three cyclic ethers. J. Serb. Chem. Soc. 78, 1443–1460 (2013)CrossRefGoogle Scholar
  16. 16.
    Brahman, D., Sinha, B.: Non-covalent interactions between {N,N/-bis[(2-pyridinyl)methylene]-1,2-benzenediamine]-bis(nitrato)}Cu(II) with pyridoxine hydrochloride in methanol at T = (298.15, 308.15 and 318.15) K. J. Chem. Thermodyn. 75, 136–144 (2014)CrossRefGoogle Scholar
  17. 17.
    Harned, H.S., Owen, B.B.: The Physical Chemistry of Electrolytic Solutions, 3rd edn. Reinhold Publishing Corporation, New York (1964)Google Scholar
  18. 18.
    Covington, A.K., Dickinson, T.: Physical Chemistry of Organic Solvent Systems. Plenum Press, New York (1973)CrossRefGoogle Scholar
  19. 19.
    Jaiswal, P.V., Ijeri, V.S., Srivastava, A.K.: Effects of surfactants on the dissociation constants of ascorbic acid and maleic acids. Colloids Surf. B 46, 45–51 (2005)CrossRefGoogle Scholar
  20. 20.
    Mussini, P.R., Longhi, P., Mussini, T., Rondinini, S.: The second ionization constant of aqueous sulphuric acid at 298.15 K from the electromotive force of the unbuffered cell: H2(g)/H2SO4(aq)/Hg2SO4(s)/Hg. J. Chem. Thermodyn. 21, 625–629 (1989)CrossRefGoogle Scholar
  21. 21.
    Pitzer, K.S., Roy, R.N., Silvester, L.F.: Thermodynamics of electrolytes. 7. Sulfuric acid. J. Am. Chem. Soc. 99, 4930–4936 (1977)CrossRefGoogle Scholar
  22. 22.
    Dickson, D.K., Wesolowski, D.J., Palmer, D.A., Mesmer, R.E.: Dissociation constant of bisulfate ion in aqueous sodium chloride solutions to 25 °C. J. Phys. Chem. 94, 7978–7985 (1990)CrossRefGoogle Scholar
  23. 23.
    Dhondge, S.S., Deshmukh, D.W., Paliwal, L.J.: Density, speed of sound, viscosity and refractive index properties of aqueous solutions of vitamins B1·HCl and B6·HCl at temperatures (278.15, 288.15, and 298.15) K. J. Chem. Thermodyn. 58, 149–157 (2013)CrossRefGoogle Scholar
  24. 24.
    Zhao, C., Ma, P., Li, J.: Partial molar volumes and viscosity B-coefficients of arginine in aqueous glucose, sucrose and l-ascorbic acid solutions at T = 298.15 K. J. Chem. Thermodyn. 37, 37–42 (2005)CrossRefGoogle Scholar
  25. 25.
    Sastry, N.V., Valand, P.K., Macwan, P.M.: Effect of hydrophilic additives on volumetric and viscosity properties of amino acids in aqueous solutions at T = (283.15 to 333.15) K. J. Chem. Thermodyn. 49, 14–23 (2012)CrossRefGoogle Scholar
  26. 26.
    Friedman, H.L., Krishnan, C.V., Franks, F. (eds.): Water: a Comprehensive Treatise, Chap. 1, vol. 3. Plenum Press, New York (1973)Google Scholar
  27. 27.
    Bhatt, R., Ahlluwalia, J.C.: Partial molar heat capacities and volumes of transfer of some amino acids and peptides from water to aqueous sodium chloride solutions at 298.15 K. J. Phys. Chem. 89, 1099–1105 (1985)CrossRefGoogle Scholar
  28. 28.
    Millero, F.J.: Water and Aqueous Solutions: Structure, Thermodynamics and Transport Processes. Wiley-Interscience, New York (1972)Google Scholar
  29. 29.
    Hepler, L.G.: Solute–solvent interactions of some salts in THF + water mixtures by volumetric measurements. Can. J. Chem. 47, 4617–4622 (1969)Google Scholar
  30. 30.
    Franks, F.: The hydrophobic interactions. In: Franks, F. (ed.) Water: Aqueous Solutions of Amphibiles and Macromolecules. Plenum Press, London (1975)Google Scholar
  31. 31.
    Stokes, R.H., Mills, R.: Viscosity of Electrolytes and Related Properties. Pergamon Press, London (1965)Google Scholar
  32. 32.
    Feakins, D., Freemantle, D.J., Lawrence, K.G.: Transition state treatment of the relative viscosity of electrolytic solutions. J. Chem. Soc. Faraday Trans. 70, 795–806 (1974)CrossRefGoogle Scholar
  33. 33.
    Tyrrell, H.J.V., Kennerley, M.: Viscosity B-coefficients between 5° and 20° for glycolamide, glycine, and N-methylated glycines in aqueous solution. J. Chem. Soc. A 11, 2724–2728 (1968)CrossRefGoogle Scholar
  34. 34.
    Glasston, S., Laidler, K., Eyring, H.: Theory of Rate Processes. McGraw-Hill, New York (1941)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Abhijit Sarkar
    • 1
  • Dipu Kumar Mishra
    • 1
  • Biswajit Sinha
    • 1
  1. 1.Department of ChemistryUniversity of North BengalDarjeelingIndia

Personalised recommendations