Advertisement

Journal of Solution Chemistry

, Volume 44, Issue 12, pp 2405–2415 | Cite as

Transport Properties of Various Ionic Liquids During Electrodialysis

  • Takatsugu Endo
  • Koji Osawa
  • Mai Tatsumi
  • Kazuaki Ninomiya
  • Kenji Takahashi
Article

Abstract

We have measured changes in ionic liquid (IL) concentrations as functions of time for seven different imidazolium based ILs undergoing electrodialysis (ED). We also measured IL concentrations in the corresponding aqueous solutions, and subsequently estimated IL diffusion coefficients in each medium. All ILs were successfully transported from the aqueous solutions in the ED process; nevertheless, their transport behavior in the membranes differed significantly. Diffusion coefficients in the membranes were several hundred times smaller than those in aqueous solution; moreover, diffusion coefficients in the membranes showed stronger ion size dependence than that predicted by the Stokes–Einstein equation. This dependence was more prominent when the cation size was increased compared to that when the anion size was increased. This behavior can be attributed to the geometry of pores in the membranes. The average pore size in the membranes was estimated to be ~4 Å, which is comparable to the size of IL ions (2–4 Å) used here and therefore slows down the ion migration of ILs, particularly the ions with larger ion size. Moreover, it is suggested that the cation exchange membranes have longer permeation paths for ions than the anion exchange membranes, which explains the slower diffusivity of the cation in the ED process.

Keywords

Ionic liquid Electrodialysis Ion transport Diffusion coefficient 

Notes

Acknowledgments

This study was supported in part by an Advanced Low Carbon Technology Research and Development Program (ALCA) (Grant number 2100040) and the Center of Innovation Program from Japan Science and Technology Agency, JST.

References

  1. 1.
    Mäki-Arvela, P., Anugwom, I., Virtanen, P., Sjöholm, R., Mikkola, J.P.: Dissolution of lignocellulosic materials and its constituents using ionic liquids—A review. Ind. Crops Prod. 32, 175–201 (2010)CrossRefGoogle Scholar
  2. 2.
    Hossain, M.M., Aldous, L.: Ionic liquids for lignin processing: dissolution, isolation, and conversion. Aust. J. Chem. 65, 1465–1477 (2012)CrossRefGoogle Scholar
  3. 3.
    Haghighi Mood, S., Hossein Golfeshan, A., Tabatabaei, M., Salehi Jouzani, G., Najafi, G.H., Gholami, M., Ardjmand, M.: Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew. Sust. Energy. Rev. 27, 77–93 (2013)CrossRefGoogle Scholar
  4. 4.
    Amarasekara, A.S., Owereh, O.S.: Hydrolysis and decomposition of cellulose in Brönsted acidic ionic liquids under mild conditions. Ind. Eng. Chem. Res. 48, 10152–10155 (2009)CrossRefGoogle Scholar
  5. 5.
    Bai, L., Wang, X., Nie, Y., Dong, H., Zhang, X., Zhang, S.: Study on the recovery of ionic liquids from dilute effluent by electrodialysis method and the fouling of cation-exchange membrane. Sci. China Chem. 56, 1811–1816 (2013)CrossRefGoogle Scholar
  6. 6.
    Wang, X., Nie, Y., Zhang, X., Zhang, S., Li, J.: Recovery of ionic liquids from dilute aqueous solutions by electrodialysis. Desalination 285, 205–212 (2012)CrossRefGoogle Scholar
  7. 7.
    Li, H., Meng, H., Li, C., Li, L.: Competitive transport of ionic liquids and impurity ions during the electrodialysis process. Desalination 245, 349–356 (2009)CrossRefGoogle Scholar
  8. 8.
    Abels, C., Thimm, K., Wulfhorst, H., Spiess, A.C., Wessling, M.: Membrane-based recovery of glucose from enzymatic hydrolysis of ionic liquid pretreated cellulose. Bioresour. Technol. 149, 58–64 (2013)CrossRefGoogle Scholar
  9. 9.
    Trinh, L.T.P., Lee, Y.J., Lee, J.-W., Bae, H.-J., Lee, H.-J.: Recovery of an ionic liquid [BMIM]Cl from a hydrolysate of lignocellulosic biomass using electrodialysis. Sep. Purif. Technol. 120, 86–91 (2013)CrossRefGoogle Scholar
  10. 10.
    Meng, H., Xiao, L., Li, L., Li, C.: Concentration of ionic liquids from aqueous ionic liquids solution using electrodialyzer. Desalin. Water Treat. 34, 326–329 (2011)CrossRefGoogle Scholar
  11. 11.
    Mier, M.P., Ibañez, R., Ortiz, I.: Influence of ion concentration on the kinetics of electrodialysis with bipolar membranes. Sep. Purif. Technol. 59, 197–205 (2008)CrossRefGoogle Scholar
  12. 12.
    Wesselingh, J.A., Vonk, P., Kraaijeveld, G.: Exploring the Maxwell–Stefan description of ion exchange. Chem. Eng. J. 57, 75–89 (1995)Google Scholar
  13. 13.
    Firdaous, L., Schlumpf, T.S., Mal´eriat, J.-P., Bourseau, P., Jaouen, P.: A mathematical model of multicomponent mass transfer in electrodialysis. Paper presented at the Scandinavian Conference on Simulation and Modeling, Trondheim, Norway, 13–14 October 2005Google Scholar
  14. 14.
    Le, X.T., Bui, T.H., Viel, P., Berthelot, T., Palacin, S.: On the structure–properties relationship of the AMV anion exchange membrane. J. Membr. Sci. 340, 133–140 (2009)CrossRefGoogle Scholar
  15. 15.
    Himmler, S., König, A., Wasserscheid, P.: Synthesis of [EMIM]OH via bipolar membrane electrodialysis—Precursor production for the combinatorial synthesis of [EMIM]-based ionic liquids. Green Chem. 9, 935–942 (2007)CrossRefGoogle Scholar
  16. 16.
    Meng, H., Li, H., Li, C., Li, L.: Synthesis of ionic liquid using a four-compartment configuration electrodialyzer. J. Membr. Sci. 318, 1–4 (2008)CrossRefGoogle Scholar
  17. 17.
    Haerens, K., De Vreese, P., Matthijs, E., Pinoy, L., Binnemans, K., Van Der Bruggen, B.: Production of ionic liquids by electrodialysis. Sep. Purif. Technol. 97, 90–95 (2012)CrossRefGoogle Scholar
  18. 18.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09. In. Gaussian Inc, Wallingford CT (2010)Google Scholar
  19. 19.
    Becke, A.D.: Density–functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)CrossRefGoogle Scholar
  20. 20.
    Lee, C., Yang, W., Parr, R.G.: Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)CrossRefGoogle Scholar
  21. 21.
    Miehlich, B., Savin, A., Stoll, H., Preuss, H.: Results obtained with the correlation energy density functionals of Becke and Lee. Yang and Parr. Chem. Phys. Lett. 157, 200–206 (1989)CrossRefGoogle Scholar
  22. 22.
    Parsons, D.F., Ninham, B.W.: Ab initio molar volumes and Gaussian radii. J. Phys. Chem. A 113, 1141–1150 (2009)CrossRefGoogle Scholar
  23. 23.
    Itoh, H., Yoshizumi, T., Saeki, M.: Sieving effect in electrodialysis with an ion exchange membrane. J. Membr. Sci. 27, 155–163 (1986)CrossRefGoogle Scholar
  24. 24.
    Choi, J.-H., Moon, S.-H.: Pore size characterization of cation-exchange membranes by chronopotentiometry using homologous amine ions. J. Membr. Sci. 191, 225–236 (2001)CrossRefGoogle Scholar
  25. 25.
    Gregor, H.P.: Ion-exchange membranes. Correlation between structure and function. Pure Appl. Chem. 16, 329–349 (1968)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Takatsugu Endo
    • 1
  • Koji Osawa
    • 1
  • Mai Tatsumi
    • 1
  • Kazuaki Ninomiya
    • 2
  • Kenji Takahashi
    • 1
  1. 1.Faculty of Natural System, Institute of Science and EngineeringKanazawa UniversityKanazawaJapan
  2. 2.Institute of Nature and Environmental TechnologyKanazawa UniversityKanazawaJapan

Personalised recommendations