Advertisement

Journal of Solution Chemistry

, Volume 44, Issue 9, pp 1812–1832 | Cite as

Temperature Dependency Studies on Volumetric Change and Structural Interaction in Aqueous Rare Earth Nitrate Solution

  • Debasmita Dash
  • Shekhar Kumar
  • C. Mallika
  • U. Kamachi Mudali
Article
  • 100 Downloads

Abstract

Densities and refractive indices of the aqueous solutions of lanthanum, samarium, cerium, europium, and praseodymium nitrate were determined at different temperatures ranging from 293.15 to 343.15 K and atmospheric pressure, with the molality ranging from ~0.0002 to ~1.5 mol·kg−1. From these density values, the apparent molal volume was calculated and correlated with the Meyer–Seaders equation and the temperature dependence of density was correlated by a second order polynomial. From the correlation, the apparent molal volumes at infinite dilution were estimated to give an idea of the structural interactions occurring in the solutions. The cubic expansion coefficient and the variation of isobaric heat capacity with pressure at different temperatures were calculated from the volumetric measurements. The measurements were performed as per ASTM procedures. The volumetric properties provide information on ion–ion and ion–solvent interactions. A comparison has been made for the experimental values with those of literature, if available. The dependency of volume on concentration provides an insight into long range electrostriction of water by the ions.

Keywords

Electrolytes Density Refractive index Apparent molal volume Structural interactions 

Supplementary material

10953_2015_381_MOESM1_ESM.docx (236 kb)
Supplementary material 1 (DOCX 237 kb)

References

  1. 1.
    Proceedings of the 6th OECD/NEA Information Exchange Meeting on Actinide and fission products Partitioning and Transmutation. EUR 19783 EN, Madrid, Spain (2000)Google Scholar
  2. 2.
    Spedding, F.H., Shiers, L.E., Brown, M.A., Baker, J.L., Guitierrez, L., McDowell, L.S., Habenschuss, A.: Densities and apparent molal volumes of some aqueous rare earth solutions at 25°. III. Rare earth nitrates. J. Phys. Chem. 79, 1087–1096 (1975)CrossRefGoogle Scholar
  3. 3.
    Spedding, F.H., Saeger, V.W., Gray, K.A., Boneau, P.K., Brown, M.A., DeKock, C.W., Baker, J.L., Shiers, L.E., Weber, H.O., Habenschuss, A.: Densities and apparent molal volumes of some aqueous rare earth solutions at 25°. I. Rare earth chlorides. J. Chem. Eng. Data 20, 72–81 (1975)CrossRefGoogle Scholar
  4. 4.
    Spedding, F.H., Shiers, L.E., Brown, M.A., Derer, J.L., Swanson, D.L., Habenschuss, A.: Densities and apparent molal volumes of some aqueous rare earth solutions at 25°. II. Rare earth perchlorates. J. Chem. Eng. Data 20, 81–88 (1975)CrossRefGoogle Scholar
  5. 5.
    Spedding, F.H., Cullen, P.F., Habenschuss, A.: Apparent molal volumes of some dilute aqueous rare earth salt solutions at 25. J. Phys. Chem. 78, 1106–1110 (1974)CrossRefGoogle Scholar
  6. 6.
    Spedding, F.H., Pikal, M.J., Ayers, B.O.: Apparent molal volumes of some aqueous rare earth chloride and nitrate solutions at 25°. J. Phys. Chem. 70, 2440–2449 (1966)CrossRefGoogle Scholar
  7. 7.
    Coward, N.A., Kiser, R.W.: A spectrophotometric study of the Nd3+\( {\text{NO}}_{3}^{ - } \) association. J. Phys. Chem. 70, 213–217 (1966)Google Scholar
  8. 8.
    Peppard, D.F., Mason, G.W., Hucher, I.: Stability constants of certain lanthanide(III) and actinide(III) chloride and nitrate complexes. J. Inorg. Nucl. Chem. 24, 881–888 (1962)CrossRefGoogle Scholar
  9. 9.
    Nelson, D.L., Irish, D.E.: Interactions in lanthanide systems. I. A Raman and infrared study of aqueous gadolinium nitrate. J. Chem. Phys. 54, 4479–4489 (1971)CrossRefGoogle Scholar
  10. 10.
    Knoeck, J.W.: Vibrational spectrometric and electrochemical evidence for lanthanum(III)–nitrate complexes in aqueous solution. Anal. Chem. 41, 2069–2079 (1969)CrossRefGoogle Scholar
  11. 11.
    Nakamura, K., Kawamura, K.: A nuclear magnetic relaxation of 139La in ionic aqueous solutions. Bull. Chem. Soc. Japan 44, 330–334 (1971)CrossRefGoogle Scholar
  12. 12.
    Reuben, J., Fiat, D.: Nuclear magnetic resonance studies of solutions of the rare-earth ions and their complexes. III. Oxygen-17 and proton shifts in aqueous solutions and the nature of aquo and mixed complexes. J. Chem. Phys. 51, 4909–4917 (1969)CrossRefGoogle Scholar
  13. 13.
    Silber, H.E., Scheinin, N., Atkinson, G., Grecsek, J.: Kinetic investigation of lanthanide(III)–nitrate complexation reaction. J. Chem. Soc. Faraday Trans. I 68, 1200–1212 (1972)CrossRefGoogle Scholar
  14. 14.
    Garnsey, R., Ebdon, D.W.: Ionic association in aqueous lanthanide nitrate solutions by ultrasonic absorption spectroscopy. J. Am. Chem. Soc. 91, 50–56 (1969)CrossRefGoogle Scholar
  15. 15.
    Choppin, G.R., Strazik, W.F.: Complexes of trivalent lanthanide and actinide ions. I. Outer-sphere ion pairs. Inorg. Chem. 4, 1250–1254 (1965)CrossRefGoogle Scholar
  16. 16.
    Bukietynska, K., Choppin, G.R.: Environmental effects on ff transitions. III. Spectral intensities of lanthanide nitrate, sulfate, and α-picolinate solutions. J. Chem. Phys. 52, 2875–2880 (1970)CrossRefGoogle Scholar
  17. 17.
    Choppin, G.R., Henrie, D.E., Buijs, K.: Environmental effects on f–f transitions. I. Neodymium(III). Inorg. Chem. 5, 1743–1748 (1966)CrossRefGoogle Scholar
  18. 18.
    Bansal, B.M.L., Patil, S.K., Sharma, H.D.: Chloride, nitrate and sulphate complexes of europium(III) and americium(III). J. Inorg. Nucl. Chem. 26, 993–1000 (1964)CrossRefGoogle Scholar
  19. 19.
    Abrahamer, I., Marcus, Y.: Interaction of lanthanide and nitrate ions in solutions. I. Inner- and outer-sphere coordination in aqueous solutions. Inorg. Chem. 6, 2103–2106 (1967)CrossRefGoogle Scholar
  20. 20.
    Spedding, F.H., Jaffe, S.: Conductances, transference numbers and activity coefficients of some rare earth perchlorates and nitrates at 25°. J. Am. Chem. Soc. 76, 884–888 (1954)CrossRefGoogle Scholar
  21. 21.
    Hester, R.E., Plane, R.A.: A Raman spectrophotometric comparison of interionic association in aqueous solutions of metal nitrates, sulfates, and perchlorates. Inorg. Chem. 3, 769–770 (1964)CrossRefGoogle Scholar
  22. 22.
    ASTM Standard: D-1193. Specification for Reagent, Water (2006)Google Scholar
  23. 23.
    ASTM Standard D-4052, Standard Test Method for Density and Relative Density of Liquids by Digital Density Meter (2002)Google Scholar
  24. 24.
    Millero, F.J.: The molal volumes of electrolytes. Chem. Rev. 71, 147–176 (1971)CrossRefGoogle Scholar
  25. 25.
    Marriot, R.A., Hakin, A.W., Rard, J.A.: Apparent molar heat capacities and apparent molar volumes of Y2(SO4)3(aq), La2(SO4)3(aq), Pr2(SO4)3(aq), Nd2(SO4)3(aq), Eu2(SO4)3(aq), Dy2(SO4)3(aq), Ho2(SO4)3(aq), and Lu2(SO4)3(aq) at T = 298.15 K and p = 0.1 MPa. J. Chem. Thermodyn. 33, 643–687 (2001)CrossRefGoogle Scholar
  26. 26.
    Hakin, A.W., Liu, J.L., Erickson, K., Munoz, J.V., Rard, J.A.: Apparent molar volumes and apparent molar heat capacities of Pr(NO3)3(aq), Gd(NO3)3(aq), Ho(NO3)3(aq), and Y(NO3)3(aq) at T = (288.15, 298.15, 313.15, and 328.15) K and p = 0.1 MPa. J. Chem. Thermodyn. 37, 153–167 (2005)CrossRefGoogle Scholar
  27. 27.
    Kumar, S., Koganti, S.B.: Prediction of densities of mixed aqueous solutions of electrolytes—UO2(NO3)2, Pu(NO3)4 and nitric acid. J. Nucl. Sci. Technol. 34, 410–412 (1997)CrossRefGoogle Scholar
  28. 28.
    Rard., J.A.: Osmotic and activity coefficients of aqueous La(NO3)3 and densities and apparent molal volumes of aqueous Eu(NO3)3 at 25 °C. J. Chem. Eng. Data 32, 92–98 (1987)CrossRefGoogle Scholar
  29. 29.
    Hepler, L.G.: Thermal expansion and structure in water and aqueous solutions. Can. J. Chem. 47, 4613–4617 (1969)CrossRefGoogle Scholar
  30. 30.
    Leipziger, F.D., Roberts, J.E.: The apparent molar refraction of some aqueous rare earth nitrates. J. Phys. Chem. 62, 1014–1016 (1958)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Debasmita Dash
    • 1
  • Shekhar Kumar
    • 1
  • C. Mallika
    • 1
  • U. Kamachi Mudali
    • 1
  1. 1.Reprocessing R&D DivisionIndira Gandhi Centre for Atomic ResearchKalpakkamIndia

Personalised recommendations