Skip to main content
Log in

Wilson Non-random Factor Reference State Based Model for Prediction of Gas Hydrate Formation Conditions in the Presence of Electrolyte and/or Alcohol in Solution

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In this study, a new thermodynamic model is presented for prediction of hydrate formation conditions of different hydrate formers in solutions containing an electrolyte, alcohol and their mixtures. The developed model is based on the γ–φ approach for modeling the phase behavior. The theory of van der Waals–Platteeuw and the Valderama–Patel–Teja equation of state coupled with non-density dependent mixing rules were used to describe the hydrate and vapor phase, respectively. Also, the nonelectrolyte Wilson, non-random factor local composition model and Margules equation were adopted to determine the water activity in solutions containing electrolyte and alcohol, respectively. The effects of solubility of the components in the liquid and vapor phases were considered for prediction of hydrate formation conditions. The model was applied to a number of hydrate forming compounds and mixtures in different electrolyte and methanol solutions, including NaCl, KCl and CaCl2 and their mixtures, and results are compared with experimental data and/or existing models. It was found that hydrate formation conditions are better predicted by this model compared to existing models, especially for ethane and propane in electrolyte solutions, and C1/CO2/C3 gas mixture in solutions containing electrolyte and alcohol. The solubility of components in the liquid and vapor phases was found to have a considerable effect on the model predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sloan, E.D.: Clathrate Hydrates of Natural Gases, 2nd edn. Marcel Dekker, New York (1998)

    Google Scholar 

  2. Nasrifar, K.H., Moshfeghian, M.: Computation of equilibrium hydrate formation temperature for CO2 and hydrocarbon gases containing CO2 in the presence of an alcohol, electrolytes and their mixtures. J. Petrol. Sci. Eng. 26, 143–150 (2000)

    Article  CAS  Google Scholar 

  3. Ripmeester, J.A., Tse, J.S., Ratcliffe, C.I., Powell, B.M.: A new clathrate hydrates structure. Nature 325, 135–136 (1987)

    Article  CAS  Google Scholar 

  4. Mooijer-van den Heuvel, M.M.: Phase behaviour and structural aspects of ternary clathrate hydrate systems: the role of additives. Ph.D. thesis, Delft University of Technology, Delft (2004)

  5. Noritomi, H., Hidaka, Y., Kato, S., Nagahama, K.: Recovery of protein from reverse micelles through gas hydrate formation. Biotechnol. Tech. 13, 181–183 (1999)

    Article  CAS  Google Scholar 

  6. Ma, Q.L., Chen, G.J., Ma, C.F., Zhang, L.W.: Study of vapor–hydrate two-phase equilibria. Fluid Phase Equilib. 265, 84–93 (2008)

    Article  CAS  Google Scholar 

  7. Hammerschmidt, E.G.: Formation of gas hydrate in natural gas transmission lines. Ind. Eng. Chem. 26, 851–855 (1934)

    Article  CAS  Google Scholar 

  8. Englezos, P.: Clathrate hydrates. Ind. Eng. Chem. Res. 32, 1251–1274 (1993)

    Article  CAS  Google Scholar 

  9. Nasrifar, K.H., Moshfeghian, M., Maddox, R.N.: Prediction of equilibrium conditions for gas hydrate formation in the mixtures of both electrolyte and alcohol. Fluid Phase Equilib. 146, 1–13 (1998)

    Article  CAS  Google Scholar 

  10. Nasrifar, K.H., Moshfeghian, M.: A model for prediction of gas hydrate formation conditions in aqueous solutions containing electrolytes and/or alcohol. J. Chem. Thermodyn. 33, 999–1014 (2001)

    Article  CAS  Google Scholar 

  11. Liao, J., Mei, D.-H., Yang, J.-T., Guo, T.-M.: Prediction of gas hydrate formation conditions in aqueous solutions containing electrolytes and (electrolytes + methanol). Ind. Eng. Chem. Res. 38, 1700–1705 (1999)

    Article  CAS  Google Scholar 

  12. Zuo, J.Y., Zhang, D., Ng, H.-J.: Representation of hydrate phase equilibria in aqueous solutions of methanol and electrolytes using an equation of state. Energy Fuels 14, 19–24 (2000)

    Article  CAS  Google Scholar 

  13. Javanmardi, J., Moshfeghian, M., Maddox, R.N.: An accurate model for prediction of gas hydrate formation conditions in mixtures of aqueous electrolyte solutions and alcohol. Can. J. Chem. Eng. 79, 367–373 (2001)

    Article  CAS  Google Scholar 

  14. Masoudi, R., Tohidi, B., Danesh, A., Todd, A.C., Anderson, R., Burgass, R.W., Yang, J.: Measurement and prediction of gas hydrate and hydrated salt equilibria in aqueous ethylene glycol and electrolyte solutions. Chem. Eng. Sci. 60, 4213–4224 (2005)

    Article  CAS  Google Scholar 

  15. Mohammadi, A.H., Tohidi, B.: Prediction of hydrate phase equilibria in aqueous solutions of salt and organic inhibitor using a combined equation of state and activity coefficient-based model. Can. J. Chem. Eng. 83, 865–871 (2005)

    Article  CAS  Google Scholar 

  16. Najibi, H., Chapoy, A., Haghighi, H., Tohidi, B.: Experimental determination and prediction of methane hydrate stability in alcohol and electrolyte solutions. Fluid Phase Equilib. 275, 127–131 (2009)

    Article  CAS  Google Scholar 

  17. Holder, G.D., Corbin, G., Papadopoupoulos, K.D.: Thermodynamic and molecular properties of gas hydrates from mixtures containing methane, argon and krypton. Ind. Eng. Chem. Fundam. 19, 282–286 (1980)

    Article  CAS  Google Scholar 

  18. Parrish, W.R., Prausnitz, J.M.: Dissociation pressures of gas hydrates formed by gas mixtures. Ind. Eng. Chem. Proc. Dev. 11, 26–35 (1972)

    Article  CAS  Google Scholar 

  19. van der Waals, J.H., Platteeuw, J.C.: Clathrate solutions. Adv. Chem. Phys. 2, 1–57 (1959)

    Google Scholar 

  20. Valderrama, J.O.: A generalized Patel-Teja equation of state for polar and nonpolar fluids and their mixtures. J. Chem. Eng. Jpn. 23, 87–91 (1990)

    Article  CAS  Google Scholar 

  21. Avlonitis, D., Danesh, A., Todd, A.C.: Prediction of VL and VLL equilibria of mixtures containing petroleum reservoir fluids and methanol with a cubic EOS. Fluid Phase Equilib. 94, 181–216 (1994)

    Article  CAS  Google Scholar 

  22. Mckoy, V., Sinanoglu, O.: Theory of dissociation pressures of some gas hydrates. J. Chem. Phys. 38, 2946–2956 (1963)

    Article  CAS  Google Scholar 

  23. Margules, M.: Über die Zusammensetzung der gesättigten Dämpfe von Misschungen. Sitzungsber. Akad. Wiss. Vienna 104, 1243–1278 (1895)

    Google Scholar 

  24. Haghtalab, A., Mazloumi, S.H.: A non-electrolyte local composition model and its application in the correlation of the mean activity coefficient of aqueous electrolyte solutions. Fluid Phase Equilib. 275, 70–77 (2009)

    Article  CAS  Google Scholar 

  25. Pitzer, K.S.: Electrolytes. From dilute solutions to fused salts. J. Am. Chem. Soc. 102, 2902–2906 (1980)

    Article  CAS  Google Scholar 

  26. Dholabhai, P.D., Englezos, P., Kalogerakis, N., Bishnoi, P.R.: Equilibrium conditions for methane hydrate formation in aqueous mixed electrolyte solutions. Can. J. Chem. Eng. 69, 800–805 (1991)

    Article  CAS  Google Scholar 

  27. Englezos, P., Bishnoi, P.R.: Experimental study on the equilibrium ethane hydrate formation conditions in aqueous electrolyte solutions. Ind. Eng. Chem. Res. 30, 1655–1659 (1991)

    Article  CAS  Google Scholar 

  28. Englezos, P., Ngan, Y.T.: Incipient equilibrium data for propane hydrate formation in aqueous solutions of NaCl, KCl, and CaCl2. J. Chem. Eng. Data 38, 250–253 (1993)

    Article  CAS  Google Scholar 

  29. Tohidi, B., Danesh, A., Todd, A.C., Burgass, R.W.: Hydrate-free zone for synthetic and real reservoir fluids in the presence of saline water. Chem. Eng. Sci. 52, 3257–3263 (1997)

    Article  CAS  Google Scholar 

  30. Dholabhai, P.D., Kalogerakis, N., Bishnoi, P.R.: Equilibrium conditions for carbon dioxide hydrate formation in aqueous electrolyte solutions. J. Chem. Eng. Data 38, 650–654 (1993)

    Article  CAS  Google Scholar 

  31. Dholabhai, P.D., Parent, J.S., Bishnoi, P.R.: Carbon dioxide hydrate equilibrium conditions in aqueous solutions containing electrolytes and methanol using a new apparatus. Ind. Eng. Chem. Res. 35, 819–823 (1996)

    Article  CAS  Google Scholar 

  32. Bishnoi, P.R., Dholabhai, P.D.: Equilibrium conditions for hydrate formation for a ternary mixture of methane, propane and carbon dioxide, and a natural gas mixture in the presence of electrolytes and ethanol. Fluid Phase Equilib. 158–160, 821–827 (1999)

    Article  Google Scholar 

  33. Mei, D.-H., Liao, J., Yang, J.-T., Guo, T.-M.: Hydrate formation of a synthetic natural gas mixture in aqueous solutions containing electrolyte, methanol, and (electrolyte + methanol). J. Chem. Eng. Data 43, 178–182 (1998)

    Article  CAS  Google Scholar 

  34. Englezos, P., Bishnoi, P.R.: Prediction of gas hydrate formation conditions in aqueous electrolyte solutions. AIChE J. 34, 1718–1721 (1988)

    Article  CAS  Google Scholar 

  35. Javanmardi, J., Moshfeghian, M., Maddox, R.N.: Simple method for predicting gas-hydrate-forming conditions in aqueous mixed electrolyte solutions. Energy Fuels 12, 219–222 (1998)

    Article  CAS  Google Scholar 

  36. Englezos, P.: Computation of the incipient equilibrium carbon dioxide hydrate formation conditions in aqueous electrolyte solutions. Ind. Eng. Chem. Res. 31, 2232–2237 (1992)

    Article  CAS  Google Scholar 

  37. Zuo, Y.-X., Gommesen, S., Guo, T.-M.: Equation of state based hydrate model for natural gas systems containing brine and polar inhibitor. Chin. J. Chem. Eng. 4, 189–202 (1996)

    CAS  Google Scholar 

  38. Ma, Q.L., Chen, G.J., Guo, T.-M.: Modelling the gas hydrate formation of inhibitor containing systems. Fluid Phase Equilib. 205, 291–302 (2003)

    Article  CAS  Google Scholar 

  39. Yousif, M.H., Young, D.B.: A simple thermodynamic model to predict the hydrate suppression in aqueous solutions of salts and alcohols. In: Proceeding of the 73th GPA Annual Convention, pp. 94–99 (1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahriar Osfouri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osfouri, S., Azin, R., Gholami, R. et al. Wilson Non-random Factor Reference State Based Model for Prediction of Gas Hydrate Formation Conditions in the Presence of Electrolyte and/or Alcohol in Solution. J Solution Chem 44, 1382–1406 (2015). https://doi.org/10.1007/s10953-015-0354-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-015-0354-9

Keywords

Navigation