Advertisement

Journal of Solution Chemistry

, Volume 44, Issue 7, pp 1382–1406 | Cite as

Wilson Non-random Factor Reference State Based Model for Prediction of Gas Hydrate Formation Conditions in the Presence of Electrolyte and/or Alcohol in Solution

  • Shahriar Osfouri
  • Reza Azin
  • Reza Gholami
  • Mahmood Moshfeghian
Article

Abstract

In this study, a new thermodynamic model is presented for prediction of hydrate formation conditions of different hydrate formers in solutions containing an electrolyte, alcohol and their mixtures. The developed model is based on the γ–φ approach for modeling the phase behavior. The theory of van der Waals–Platteeuw and the Valderama–Patel–Teja equation of state coupled with non-density dependent mixing rules were used to describe the hydrate and vapor phase, respectively. Also, the nonelectrolyte Wilson, non-random factor local composition model and Margules equation were adopted to determine the water activity in solutions containing electrolyte and alcohol, respectively. The effects of solubility of the components in the liquid and vapor phases were considered for prediction of hydrate formation conditions. The model was applied to a number of hydrate forming compounds and mixtures in different electrolyte and methanol solutions, including NaCl, KCl and CaCl2 and their mixtures, and results are compared with experimental data and/or existing models. It was found that hydrate formation conditions are better predicted by this model compared to existing models, especially for ethane and propane in electrolyte solutions, and C1/CO2/C3 gas mixture in solutions containing electrolyte and alcohol. The solubility of components in the liquid and vapor phases was found to have a considerable effect on the model predictions.

Keywords

Hydrate Thermodynamic model Electrolyte solution Polar inhibitor Local composition model 

References

  1. 1.
    Sloan, E.D.: Clathrate Hydrates of Natural Gases, 2nd edn. Marcel Dekker, New York (1998)Google Scholar
  2. 2.
    Nasrifar, K.H., Moshfeghian, M.: Computation of equilibrium hydrate formation temperature for CO2 and hydrocarbon gases containing CO2 in the presence of an alcohol, electrolytes and their mixtures. J. Petrol. Sci. Eng. 26, 143–150 (2000)CrossRefGoogle Scholar
  3. 3.
    Ripmeester, J.A., Tse, J.S., Ratcliffe, C.I., Powell, B.M.: A new clathrate hydrates structure. Nature 325, 135–136 (1987)CrossRefGoogle Scholar
  4. 4.
    Mooijer-van den Heuvel, M.M.: Phase behaviour and structural aspects of ternary clathrate hydrate systems: the role of additives. Ph.D. thesis, Delft University of Technology, Delft (2004)Google Scholar
  5. 5.
    Noritomi, H., Hidaka, Y., Kato, S., Nagahama, K.: Recovery of protein from reverse micelles through gas hydrate formation. Biotechnol. Tech. 13, 181–183 (1999)CrossRefGoogle Scholar
  6. 6.
    Ma, Q.L., Chen, G.J., Ma, C.F., Zhang, L.W.: Study of vapor–hydrate two-phase equilibria. Fluid Phase Equilib. 265, 84–93 (2008)CrossRefGoogle Scholar
  7. 7.
    Hammerschmidt, E.G.: Formation of gas hydrate in natural gas transmission lines. Ind. Eng. Chem. 26, 851–855 (1934)CrossRefGoogle Scholar
  8. 8.
    Englezos, P.: Clathrate hydrates. Ind. Eng. Chem. Res. 32, 1251–1274 (1993)CrossRefGoogle Scholar
  9. 9.
    Nasrifar, K.H., Moshfeghian, M., Maddox, R.N.: Prediction of equilibrium conditions for gas hydrate formation in the mixtures of both electrolyte and alcohol. Fluid Phase Equilib. 146, 1–13 (1998)CrossRefGoogle Scholar
  10. 10.
    Nasrifar, K.H., Moshfeghian, M.: A model for prediction of gas hydrate formation conditions in aqueous solutions containing electrolytes and/or alcohol. J. Chem. Thermodyn. 33, 999–1014 (2001)CrossRefGoogle Scholar
  11. 11.
    Liao, J., Mei, D.-H., Yang, J.-T., Guo, T.-M.: Prediction of gas hydrate formation conditions in aqueous solutions containing electrolytes and (electrolytes + methanol). Ind. Eng. Chem. Res. 38, 1700–1705 (1999)CrossRefGoogle Scholar
  12. 12.
    Zuo, J.Y., Zhang, D., Ng, H.-J.: Representation of hydrate phase equilibria in aqueous solutions of methanol and electrolytes using an equation of state. Energy Fuels 14, 19–24 (2000)CrossRefGoogle Scholar
  13. 13.
    Javanmardi, J., Moshfeghian, M., Maddox, R.N.: An accurate model for prediction of gas hydrate formation conditions in mixtures of aqueous electrolyte solutions and alcohol. Can. J. Chem. Eng. 79, 367–373 (2001)CrossRefGoogle Scholar
  14. 14.
    Masoudi, R., Tohidi, B., Danesh, A., Todd, A.C., Anderson, R., Burgass, R.W., Yang, J.: Measurement and prediction of gas hydrate and hydrated salt equilibria in aqueous ethylene glycol and electrolyte solutions. Chem. Eng. Sci. 60, 4213–4224 (2005)CrossRefGoogle Scholar
  15. 15.
    Mohammadi, A.H., Tohidi, B.: Prediction of hydrate phase equilibria in aqueous solutions of salt and organic inhibitor using a combined equation of state and activity coefficient-based model. Can. J. Chem. Eng. 83, 865–871 (2005)CrossRefGoogle Scholar
  16. 16.
    Najibi, H., Chapoy, A., Haghighi, H., Tohidi, B.: Experimental determination and prediction of methane hydrate stability in alcohol and electrolyte solutions. Fluid Phase Equilib. 275, 127–131 (2009)CrossRefGoogle Scholar
  17. 17.
    Holder, G.D., Corbin, G., Papadopoupoulos, K.D.: Thermodynamic and molecular properties of gas hydrates from mixtures containing methane, argon and krypton. Ind. Eng. Chem. Fundam. 19, 282–286 (1980)CrossRefGoogle Scholar
  18. 18.
    Parrish, W.R., Prausnitz, J.M.: Dissociation pressures of gas hydrates formed by gas mixtures. Ind. Eng. Chem. Proc. Dev. 11, 26–35 (1972)CrossRefGoogle Scholar
  19. 19.
    van der Waals, J.H., Platteeuw, J.C.: Clathrate solutions. Adv. Chem. Phys. 2, 1–57 (1959)Google Scholar
  20. 20.
    Valderrama, J.O.: A generalized Patel-Teja equation of state for polar and nonpolar fluids and their mixtures. J. Chem. Eng. Jpn. 23, 87–91 (1990)CrossRefGoogle Scholar
  21. 21.
    Avlonitis, D., Danesh, A., Todd, A.C.: Prediction of VL and VLL equilibria of mixtures containing petroleum reservoir fluids and methanol with a cubic EOS. Fluid Phase Equilib. 94, 181–216 (1994)CrossRefGoogle Scholar
  22. 22.
    Mckoy, V., Sinanoglu, O.: Theory of dissociation pressures of some gas hydrates. J. Chem. Phys. 38, 2946–2956 (1963)CrossRefGoogle Scholar
  23. 23.
    Margules, M.: Über die Zusammensetzung der gesättigten Dämpfe von Misschungen. Sitzungsber. Akad. Wiss. Vienna 104, 1243–1278 (1895)Google Scholar
  24. 24.
    Haghtalab, A., Mazloumi, S.H.: A non-electrolyte local composition model and its application in the correlation of the mean activity coefficient of aqueous electrolyte solutions. Fluid Phase Equilib. 275, 70–77 (2009)CrossRefGoogle Scholar
  25. 25.
    Pitzer, K.S.: Electrolytes. From dilute solutions to fused salts. J. Am. Chem. Soc. 102, 2902–2906 (1980)CrossRefGoogle Scholar
  26. 26.
    Dholabhai, P.D., Englezos, P., Kalogerakis, N., Bishnoi, P.R.: Equilibrium conditions for methane hydrate formation in aqueous mixed electrolyte solutions. Can. J. Chem. Eng. 69, 800–805 (1991)CrossRefGoogle Scholar
  27. 27.
    Englezos, P., Bishnoi, P.R.: Experimental study on the equilibrium ethane hydrate formation conditions in aqueous electrolyte solutions. Ind. Eng. Chem. Res. 30, 1655–1659 (1991)CrossRefGoogle Scholar
  28. 28.
    Englezos, P., Ngan, Y.T.: Incipient equilibrium data for propane hydrate formation in aqueous solutions of NaCl, KCl, and CaCl2. J. Chem. Eng. Data 38, 250–253 (1993)CrossRefGoogle Scholar
  29. 29.
    Tohidi, B., Danesh, A., Todd, A.C., Burgass, R.W.: Hydrate-free zone for synthetic and real reservoir fluids in the presence of saline water. Chem. Eng. Sci. 52, 3257–3263 (1997)CrossRefGoogle Scholar
  30. 30.
    Dholabhai, P.D., Kalogerakis, N., Bishnoi, P.R.: Equilibrium conditions for carbon dioxide hydrate formation in aqueous electrolyte solutions. J. Chem. Eng. Data 38, 650–654 (1993)CrossRefGoogle Scholar
  31. 31.
    Dholabhai, P.D., Parent, J.S., Bishnoi, P.R.: Carbon dioxide hydrate equilibrium conditions in aqueous solutions containing electrolytes and methanol using a new apparatus. Ind. Eng. Chem. Res. 35, 819–823 (1996)CrossRefGoogle Scholar
  32. 32.
    Bishnoi, P.R., Dholabhai, P.D.: Equilibrium conditions for hydrate formation for a ternary mixture of methane, propane and carbon dioxide, and a natural gas mixture in the presence of electrolytes and ethanol. Fluid Phase Equilib. 158–160, 821–827 (1999)CrossRefGoogle Scholar
  33. 33.
    Mei, D.-H., Liao, J., Yang, J.-T., Guo, T.-M.: Hydrate formation of a synthetic natural gas mixture in aqueous solutions containing electrolyte, methanol, and (electrolyte + methanol). J. Chem. Eng. Data 43, 178–182 (1998)CrossRefGoogle Scholar
  34. 34.
    Englezos, P., Bishnoi, P.R.: Prediction of gas hydrate formation conditions in aqueous electrolyte solutions. AIChE J. 34, 1718–1721 (1988)CrossRefGoogle Scholar
  35. 35.
    Javanmardi, J., Moshfeghian, M., Maddox, R.N.: Simple method for predicting gas-hydrate-forming conditions in aqueous mixed electrolyte solutions. Energy Fuels 12, 219–222 (1998)CrossRefGoogle Scholar
  36. 36.
    Englezos, P.: Computation of the incipient equilibrium carbon dioxide hydrate formation conditions in aqueous electrolyte solutions. Ind. Eng. Chem. Res. 31, 2232–2237 (1992)CrossRefGoogle Scholar
  37. 37.
    Zuo, Y.-X., Gommesen, S., Guo, T.-M.: Equation of state based hydrate model for natural gas systems containing brine and polar inhibitor. Chin. J. Chem. Eng. 4, 189–202 (1996)Google Scholar
  38. 38.
    Ma, Q.L., Chen, G.J., Guo, T.-M.: Modelling the gas hydrate formation of inhibitor containing systems. Fluid Phase Equilib. 205, 291–302 (2003)CrossRefGoogle Scholar
  39. 39.
    Yousif, M.H., Young, D.B.: A simple thermodynamic model to predict the hydrate suppression in aqueous solutions of salts and alcohols. In: Proceeding of the 73th GPA Annual Convention, pp. 94–99 (1994)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Shahriar Osfouri
    • 1
  • Reza Azin
    • 2
  • Reza Gholami
    • 1
  • Mahmood Moshfeghian
    • 3
  1. 1.Department of Chemical Engineering, Faculty of Petroleum, Gas and Petrochemical EngineeringPersian Gulf UniversityBushehrIran
  2. 2.Department of Petroleum Engineering, Faculty of Petroleum, Gas and Petrochemical EngineeringPersian Gulf UniversityBushehrIran
  3. 3.School of Chemical and Petroleum EngineeringShiraz UniversityShirazIran

Personalised recommendations