Skip to main content

Advertisement

Log in

Acoustic and Volumetric Properties of Diluted Solutions of Water in Ionic Liquids

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Herein, we report the densities and speeds of sound in binary mixtures of three hydrophobic and one hydrophilic ionic liquids: 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [C4mim][NTf2], 1-butyl-1-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide, [C4mpyr][NTf2], 1-propyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [C3mim][NTf2] and 1-ethyl-3-methylimidazolium thiocyanate, [C2mim][SCN], with water at 298.15 K and 0.1 MPa. The concentration range of water, which encompassed relatively small values well below the saturation point, is often regarded as an impurity for hydrophobic ionic liquids. On the basis of experimental results the molar volume, adiabatic molar compressibility, partial molar volume and apparent molar volume, as well as, partial molar and apparent molar isentropic compressibility properties were then calculated. Interesting results are obtained using the solutions based on the hydrophilic [C2mim][SCN], since these mixtures are characterized by relatively low density and high values of speed of sound. Furthermore, the partial molar volumes and partial molar adiabatic compressibilities of water in solution with [C2mim][SCN] are the lowest among the investigated in mixtures with ionic liquids. However, in the case of the hydrophobic ionic liquid solutions, only small differences are observed for molar adiabatic compressibilities with the change of the cation structure, i.e. for water + [C4mim][NTf2] or + [C4mpyr][NTf2]. A more pronounced difference has been observed for the partial molar compressibility of water in solutions with these two ionic liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yau, H.M., Chan, S.J., George, S.R.D., Hook, J.M., Croft, A.K., Harper, J.B.: Ionic liquids: just molten salts after all? Molecules 14, 2521–2534 (2009)

    Article  CAS  Google Scholar 

  2. Wilkes, J.S.: A short history of ionic liquids – from molten salts to neoteric solvents. Green Chem. 4, 73–80 (2002)

    Article  CAS  Google Scholar 

  3. Rogers, R.D., Seddon, K.R.: Ionic liquids – solvents of the future? Science 302, 792–793 (2003)

    Article  Google Scholar 

  4. Heintz, A.: Recent developments in thermodynamics and thermophysics of non-aqueous mixtures containing ionic liquids. A review. J. Chem. Thermodyn 37, 525–535 (2005)

    Article  CAS  Google Scholar 

  5. Wasserscheid, P., Welton, T. (eds.): Ionic Liquids in Synthesis. Wiley, Weinheim (2008)

    Google Scholar 

  6. Kadokawa, J. (Ed.) Ionic Liquids – New Aspects For The Future. InTech-Open Access Company. http://www.intechopen.com/books/ionic-liquids-new-aspects-for-the-future (2013). Accessed 23 Jan 2013

  7. Seddon, K.R., Stark, A., Torres, M.-J.: Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl. Chem. 72, 2275–2287 (2000)

    Article  CAS  Google Scholar 

  8. Jacquemin, J., Husson, P., Padua, A.A.H., Majer, V.: Density and viscosity of several pure and water-saturated ionic liquids. Green Chem. 8, 172–180 (2006)

    Article  CAS  Google Scholar 

  9. Jacquemin, J., Goodrich, P., Jiang, W., Rooney, D.W., Hardacre, C.: Are alkylsulfates-based protic and aprotic ionic liquids stable with water and alcohols? A thermodynamic approach. J. Phys. Chem. B 117, 1938–1949 (2013)

    Article  CAS  Google Scholar 

  10. Schröder, U., Wadhawan, J.D., Compton, R.G., Marken, F., Suarez, P.A.Z., Consorti, C.S., de Souarez, R.F., Dupont, J.: Water-induced accelerated ion diffusion: voltammetric studies in 1-methyl-3-[2,6-(S)-dimethylocten-2-yl]imidazolium tetrafuoroborate, 1-butyl-3-methylimidazolium tetrafuoroborate and hexafuorophosphate ionic liquids. New J. Chem. 24, 1009–1015 (2000)

    Article  Google Scholar 

  11. Kohno, Y., Ohno, H.: Ionic liquid/water mixtures: from hostility to conciliation. Chem. Commun. 48, 7119–7130 (2012)

    Article  CAS  Google Scholar 

  12. Kerlé, D., Ludwig, R., Paschek, D.: The influence of water on the solubility of carbon dioxide in imidazolium based ionic liquids. Z. Phys. Chem. 227, 167–176 (2013)

    Article  Google Scholar 

  13. Widegren, J.A., Magee, J.W.: Density, viscosity, speed of sound, and electrolytic conductivity for the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and its mixtures with water. J. Chem. Eng. Data 52, 2331–2338 (2007)

    Article  CAS  Google Scholar 

  14. Chirico, R.D., Diky, V., Magee, J.W., Frenkel, M., Marsh, K.N.: Thermodynamic and thermophysical properties of the reference ionic liquid: 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide (including mixtures). Part 2. Critical evaluation and recommended property values (IUPAC technical report). Pure Appl. Chem. 81, 791–828 (2009)

    Article  CAS  Google Scholar 

  15. Klomfar, J., Součková, M., Pátek, J.: PρT measurements for 1-alkyl-3-methylimidazolium-based ionic liquids with tetrafluoroborate and a trifluoromethanesulfonate Anion. J. Chem. Eng. Data 57, 708–720 (2012)

    Article  CAS  Google Scholar 

  16. Freire, M.G., Carvalho, P.J., Gardas, R.L., Marrucho, I.M., Santos, L.M.N.B.F., Coutinho, J.A.P.: Mutual solubilities of water and the [C n mim][Tf2N] hydrophobic ionic liquids. J. Phys. Chem. B 112, 1604–1610 (2008)

    Article  CAS  Google Scholar 

  17. Freire, M.G., Santos, L.M.N.B.F., Fernandes, A.M., Coutinho, J.A.P., Marrucho, I.M.: An overview of the mutual solubilities of water–imidazolium-based ionic liquids systems. Fluid Phase Equilib. 261, 449–454 (2007)

    Article  CAS  Google Scholar 

  18. Řehák, K., Morávek, P., Strejc, M.: Determination of mutual solubilities of ionic liquids and water. Fluid Phase Equilib. 316, 17–25 (2012)

    Article  Google Scholar 

  19. Vranes, M., Dozic, S., Djeric, V., Gadzuric, S.: Physicochemical characterization of 1-butyl-3-methylimidazolium and 1-butyl-1-methylpyrrolidinium bis(trifluoromethyl- sulfonyl)imide. J. Chem. Eng. Data 57, 1072–1077 (2012)

    Article  CAS  Google Scholar 

  20. Geppert-Rybczyńska, M., Lehmann, J.K., Heintz, A.: Physicochemical properties of two 1-alkyl-1-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide ionic liquids and of binary mixtures of 1-butyl-1-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide with methanol or acetonitrile. J. Chem. Thermodyn 71, 171–181 (2014)

    Article  Google Scholar 

  21. Domańska, U., Królikowska, M.: Effect of temperature and composition on the surface tension and thermodynamic properties of binary mixtures of 1-butyl-3-methylimidazolium thiocyanate with alcohols. J. Colloid Interface Sci. 348, 661–667 (2010)

    Article  Google Scholar 

  22. Masterton, W.L., Seiler, H.K.: Apparent and partial molal volumes of water in organic solvents. J. Phys. Chem. 72, 4257–4262 (1968)

    Article  CAS  Google Scholar 

  23. Sakurai, M., Nakagawa, T.: Densities of dilute solutions of water in benzene and in methanol at 278.15, 288.15, 298.15, 308.15, and 318.15 K. Partial molar volumes V w and values of ∂V w /∂T for water in benzene and in methanol. J. Chem. Thermodynamics 14, 269–274 (1982)

    Article  CAS  Google Scholar 

  24. Żak, A., Dzida, M., Zorębski, M., Ernst, S.: A high pressure system for measurements of the speed of sound in liquids. Rev. Sci. Instrum. 71, 1756–1765 (2000)

    Article  Google Scholar 

  25. Dzida, M., Chorążewski, M., Zorębski, M., Mańka, R.: Modification of a high pressure device for speed of sound measurements in liquids. J. Physique IV 137, 203–207 (2006)

    CAS  Google Scholar 

  26. Zorębski, E., Geppert-Rybczyńska, M., Zorębski, M.: Acoustics as a tool for better characterization of ionic liquids: a comparative study of 1-alkyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide room temperature ionic liquid. J. Phys. Chem. B 117, 3867–3876 (2013)

    Article  Google Scholar 

  27. Gómez, E., Calvar, N., Macedo, E.A., Domínguez, A.: Effect of the temperature on the physical properties of pure 1-propyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide and characterization of its binary mixtures with alcohols. J. Chem. Thermodyn 45, 9–15 (2012)

    Article  Google Scholar 

  28. Królikowska, M., Hofman, T.: Densities, isobaric expansivities and isothermal compressibilities of the thiocyanate-based ionic liquids at temperatures (298.15–338.15 K) and pressures up to 10 MPa. Thermochim. Acta 530, 1–6 (2012)

    Article  Google Scholar 

  29. Freire, M.G., Teles, A.R.R., Rocha, M.A.A., Schröder, B., Neves, C.M.S.S., Carvalho, P.J., Evtuguin, D.V., Santos, L.M.N.B.F., Coutinho, J.A.P.: Thermophysical characterization of ionic liquids able to dissolve biomass. J. Chem. Eng. Data 56, 4813–4822 (2011)

    Article  CAS  Google Scholar 

  30. Ficke, L.E., Novak, R.R., Brennecke, J.F.: Thermodynamic and thermophysical properties of ionic liquid + water systems. J. Chem. Eng. Data 55, 4946–4950 (2010)

    Article  CAS  Google Scholar 

  31. Seki, S., Tsuzuki, S., Hayamizu, K., Umebayashi, Y., Serizawa, N., Takei, K., Miyashiro, H.: Comprehensive refractive index property for room-temperature ionic liquids. J. Chem. Eng. Data 57, 2211–2216 (2012)

    Article  CAS  Google Scholar 

  32. Douhéret, G., Davis, M.I.: Measurements, analysis, and utility of excess molar –(∂V/∂p) S . Chem. Soc. Rev. 22, 43–50 (1993)

    Article  Google Scholar 

  33. Douhéret, G., Davis, M.I., Reis, J.C.R., Blandamer, M.J.: Isentropic compressibilities—experimental origin and the quest for their rigorous estimation in thermodynamically ideal liquid mixtures. ChemPhysChem 2, 148–161 (2001)

    Article  Google Scholar 

  34. Pečar, D., Doleček, V.: Volumetric properties of ethanol–water mixtures under high temperatures and pressures. Fluid Phase Equilib. 230, 36–44 (2005)

    Article  Google Scholar 

  35. Roth, Ch., Rose, A., Ludwig, R.: Ionic liquids can be more hydrophobic than chloroform or benzene. ChemPhysChem 13, 3102–3105 (2012)

    Article  CAS  Google Scholar 

  36. Perron, G., Hardy, A., Justice, J.C., Desnoyers, J.E.: Model system for concentrated electrolyte solutions: thermodynamic and transport properties of ethylammonium nitrate in acetonitrile and in water. J. Solution Chem. 22, 1159–1178 (1993)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Monika Geppert-Rybczyńska or Johan Jacquemin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10953_2015_327_MOESM1_ESM.pdf

Electronic supplementary material: Figures S1– S13 contain 1H and 13C NMR spectra and TGA analysis of 1-propyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide [C3mim][NTf2] and comparisons of apparent and partial molar volumes and adiabatic compressibilities of water in each ILs separately. (PDF 426 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skowronek, J., Geppert-Rybczyńska, M., Jacquemin, J. et al. Acoustic and Volumetric Properties of Diluted Solutions of Water in Ionic Liquids. J Solution Chem 44, 824–837 (2015). https://doi.org/10.1007/s10953-015-0327-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-015-0327-z

Keywords

Navigation