Advertisement

Journal of Solution Chemistry

, Volume 44, Issue 3–4, pp 890–899 | Cite as

Density Functional Theory Study on the Cholinium Dihydrogenphosphate Ionic Liquid for Acid Gas Removal

  • Gregorio García
  • Santiago Aparicio
  • Mert Atilhan
Article

Abstract

Cholinium dihydrogenphosphate is proposed as a new ionic liquid for acid gas removal from flue gases. A theoretical study using density functional theory and COSMO-RS approaches was carried out to get a nanoscopic picture of the interaction between the involved ions and CO2 and SO2 molcules. This computational approach allowed us to infer the main molecular features controlling gas absorption, such as preferential interaction sites, chemical potentials, binding energies, and topological properties of ion–gas interactions through the Atoms-in-a-Molecule approach. The results reported herein show that the theoretical approach allowed us to infer the most remarkable features of acid gas capture by ionic liquids, and thus it could be used for improving the ability of ionic liquids for acid gas capture purposes through molecular engineering of the ions’ properties.

Keywords

Ionic liquid Acid gas capture Choline Phosphate DFT COSMO-RS 

Notes

Acknowledgments

This paper was made possible by the support of an NPRP Grant (No: 6-330-2-140) from the Qatar National Research Fund. The statements made herein are solely the responsibility of the authors. Gregorio García acknowledges funding by Junta de Castilla y León, cofunding by the European Social Fund, for a postdoctoral contract. We also acknowledge the Computing and Advances Technologies Foundation of Extremadura (CénitS, LUSITANIA Supercomputer, Spain) and Consortium of Scientific and Academic Services of Cataluña (CSUC, Spain) for providing the supercomputing facilities. The statements made herein are solely the responsibility of the authors.

References

  1. 1.
    Friedlingstein, P., Houghton, R.A., Marland, G., Hackler, G., Boden, T.A., Conway, T.J., Canadell, J.G., Raupach, M.R., Ciais, P., Le Quéré, C.: Update on CO2 emissions. Nat. Geosci. 3, 811–812 (2010)CrossRefGoogle Scholar
  2. 2.
    Karadas, F., Atilhan, M., Aparicio, S.: Review on the use of ionic liquids (ILs) as alternative fluids for CO2 capture and natural gas sweetening. Energ. Fuel. 24, 5817–5828 (2010)CrossRefGoogle Scholar
  3. 3.
    Huber, M., Knutti, R.: Antrophogenic and natural warming inferred from changes in earth’s energy balance. Nat. Geosci. 5, 31–36 (2012)CrossRefGoogle Scholar
  4. 4.
    Montzka, S.A., Dlugokencky, E.J., Butler, J.H.: Non-CO2 greenhouse gases and climate change. Nature 476, 43–50 (2011)CrossRefGoogle Scholar
  5. 5.
    Smith, S.J., van Aardenne, J., Klimont, Z., Andres, R.J., Volke, A., Delgado Arias, S.: Antropogenic sulfur dioxide emissions: 1850–2005. Atmos. Chem. Phys. 11, 1101–1116 (2011)CrossRefGoogle Scholar
  6. 6.
    Younas, O., Banat, F.: Parametric sensitivity analysis on a GASCO’s acid gas removal plant using ProMax simulator. J. Nat. Gas Sci. Technol. 18, 247–253 (2014)CrossRefGoogle Scholar
  7. 7.
    Figueroa, J.D., Fout, T., Plasynski, S., McIlvried, H., Srivastava, R.D.: Advances in CO2 capture technology; The U.S. Department of Energy’s carbon sequestration program. Int. J. Greenh. Gas Control 2, 9–20 (2008)CrossRefGoogle Scholar
  8. 8.
    Espinal, L., Poster, D.L., Wong-Ng, W., Allen, A., Green, M.L.: Measurement, standards, and data needs for CO2 capture materials: a critical review. Environ. Sci. Technol. 47, 11960–11975 (2013)CrossRefGoogle Scholar
  9. 9.
    Wang, M., Lawal, A., Stephenson, P., Sidders, J., Ramshaw, C.: Post-combustion CO2 capture with chemical absorption: a state-of-the-art review. Chem. Eng. Res. Design 89, 1609–1624 (2011)CrossRefGoogle Scholar
  10. 10.
    Rochelle, G.T.: Amine scrubbing for CO2 capture. Science 325, 1652–1654 (2009)CrossRefGoogle Scholar
  11. 11.
    Rao, A.B., Rubin, E.S.: A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environ. Sci. Technol. 36, 4467–4475 (2002)CrossRefGoogle Scholar
  12. 12.
    Gouedard, C., Picq, D., Launay, D., Carrette, P.L.: Amine degradation in CO2 capture. I. A review. Int. J. Greenh. Gas Control 10, 244–270 (2012)CrossRefGoogle Scholar
  13. 13.
    Kittel, J., Idem, R., Gelowitz, D., Tontiwachwuthikul, P., Parrain, G., Bonneau, A.: Corrosion in MEA units for CO2 capture: pilot plant studies. Energy Procedia 1, 791–797 (2009)CrossRefGoogle Scholar
  14. 14.
    Brennecke, J.F., Gurkan, B.E.: Ionic liquids for CO2 capture and emission reduction. J. Phys. Chem. Lett. 1, 3459–3464 (2010)CrossRefGoogle Scholar
  15. 15.
    Bates, E.D., Mayton, R.D., Ntai, I., Davis, J.H.: CO2 capture by a task-specific ionic liquid. J. Am. Chem. Soc. 124, 926–927 (2002)CrossRefGoogle Scholar
  16. 16.
    Seo, S., Simoni, L.D., Ma, M., DeSilva, A., Huang, Y., Stadtherr, M.A., Brennecke, J.F.: Phase-change ionic liquids for postcombustion CO2 capture. Energ. Fuel. (2014). doi: 10.1021/ef501374x Google Scholar
  17. 17.
    Chen, J.J., Li, W.W., Li, X.L., Yu, H.Q.: Carbon dioxide capture by aminoalkylimidazolium-based ionic liquid: a computational investigation. Phys. Chem. Chem. Phys.: PCCP 14, 4589–4596 (2012)CrossRefGoogle Scholar
  18. 18.
    Sanz, V., Alcalde, R., Atilhan, M., Aparciio, S.: Insights from quantum chemistry into piperazine-based ionic liquids and their behavior with regards to CO2. J. Mol. Model. 20, 2107 (2014)Google Scholar
  19. 19.
    Yu, G., Chen, X.: SO2 capture by guanidinium-based ionic liquids: a theoretical study. J. Phys. Chem. B 115, 3466–3477 (2011)CrossRefGoogle Scholar
  20. 20.
    Fukumoto, K., Yoshizawa, M., Ohno, H.: Room temperature ionic liquids from 20 natural aminoacids. J. Am. Chem. Soc. 127, 2398–2399 (2005)CrossRefGoogle Scholar
  21. 21.
    Hou, X.D., Liu, Q.P., Smith, T.J., Li, N., Zong, M.H.: Evaluation of toxicity and biodegradability of choliniumaminoacids ionic liquids. PLoS ONE 8, e59145 (2013)CrossRefGoogle Scholar
  22. 22.
    Couling, D.J., Bernot, R.J., Docherty, K.M., Dixon, J.K., Maginn, E.J.: Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure–property relationship modeling. Green Chem. 8, 32–90 (2006)CrossRefGoogle Scholar
  23. 23.
    Costa, A.J.L., Soromenho, M.R.C., Shimizu, K., Marrucho, I.M., Esperanca, J.M.S.S., Rebelo, L.P.N., Esperanca, J.M.S.S.: Density, thermal expansion and viscosity of cholinium-derived ionic liquids. ChemPhysChem 13, 1902–1909 (2012)CrossRefGoogle Scholar
  24. 24.
    Aparicio, S., Atilhan, M., Khraisheh, M., Alcalde, R., Fernández, J.: Study of hydroxylammonium ionic liquids. II. Computational analysis of CO2 absorption. J. Phys. Chem. B 115, 12487–12498 (2011)CrossRefGoogle Scholar
  25. 25.
    Bazhenov, S., Ramdin, M., Volkov, A., Volkov, V., Vlogt, T.J.H., de Loos, T.W.: CO2 solubility in biodegradable hydroxylammonium-based ionic liquids. J. Chem. Eng. Data 59(702–708), 13 (2014)Google Scholar
  26. 26.
    Eckert, F., Klamt, A.: Fast solvent screening via quantum chemistry: COSMO-RS approach. AIChE J. 48, 369–385 (2002)CrossRefGoogle Scholar
  27. 27.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, revision D.01. Gaussian, Inc., Wallingford, CT (2010)Google Scholar
  28. 28.
    Lee, C., Yang, W., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. 37, 785–789 (1988)CrossRefGoogle Scholar
  29. 29.
    Becke, A.D.: Density-functional thermochemistry III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)CrossRefGoogle Scholar
  30. 30.
    Becke, A.D.: Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988)CrossRefGoogle Scholar
  31. 31.
    Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006)CrossRefGoogle Scholar
  32. 32.
    Cohen, A.J., Mori-Sánchez, P., Yang, W.: Challenges for density functional theory. Chem. Rev. 112, 289–320 (2012)CrossRefGoogle Scholar
  33. 33.
    Schwabe, T., Grimme, S.: Double-hybrid density functionals with long-range dispersion corrections: higher accuracy and extended applicability. Phys. Chem. Chem. Phys. 9, 3397–3406 (2007)CrossRefGoogle Scholar
  34. 34.
    Simon, S., Duran, M., Dannenberg, J.J.: How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? J. Chem. Phys. 105, 11024–11031 (1996)CrossRefGoogle Scholar
  35. 35.
    Bader, R.F.W.: Atoms in Molecules: a Quantum Theory. Oxford (1990)Google Scholar
  36. 36.
    Lu, T., Chen, F.: Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012)CrossRefGoogle Scholar
  37. 37.
    Breneman, C.M., Wiberg, K.B.: Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J. Comput. Chem. 11, 361–373 (1990)CrossRefGoogle Scholar
  38. 38.
    Gonzalez-Miguel, M., Talreja, M., Ethier, A.L., Flack, K., Switzer, J.R., Biddinger, E.J., Pollet, P., Palomar, J., Rodriguez, F., Eckert, C.A., Liotta, C.L.: COSMO-RS studies: structure–property relationships for CO2 capture by reversible ionic liquids. Ind. Eng. Chem. Res. 51, 16066–16073 (2012)CrossRefGoogle Scholar
  39. 39.
    Zhang, X., Liu, Z., Wang, W.: Screening of ionic liquids to capture CO2 by COSMO-RS and experiments. AIChE J. 54, 2717–2728 (2008)CrossRefGoogle Scholar
  40. 40.
    Ab-Manan, N., Hardacre, C., Jacquemin, J., Rooney, D.W., Youngs, T.G.A.: Evaluation of gas solubility prediction in ionic liquids using COSMOthermX. J. Chem. Eng. Data 54, 2005–2022 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of BurgosBurgosSpain
  2. 2.Department of Chemical EngineeringQatar UniversityDohaQatar

Personalised recommendations