Journal of Solution Chemistry

, Volume 44, Issue 3–4, pp 742–753 | Cite as

Interesting Viscosity Changes in the Aqueous Urea–Ionic Liquid System: Effect of Alkyl Chain Length Attached to the Cationic Ring of an Ionic Liquid

  • Raju Nanda
  • Gitanjali Rai
  • Anil Kumar


In the present article, we demonstrate the effect of urea on the structure of the ionic liquids in their aqueous solutions through viscometric methods. We unravel the structure altering effect of urea in its aqueous solutions of ionic liquids possessing higher alkyl chains. The finding is an attempt to discern the anomalous behavior of urea as shown in the past with the help of many techniques. Interestingly, in the aqueous solutions of the imidazolium based ionic liquids having substitution of –C4H9 and –C6H13 groups on the imidazolium ring, urea exhibits kosmotropic behavior. Further increase in the substituted alkyl group such as –C8H17 alters the urea behavior to be chaotropic.


Viscosity Ionic liquids Alkyl chain length Urea Structure-maker Structure-breaker 



RN acknowledges the CSIR, New Delhi, for awarding a research fellowship. Both GR and AK thank DST, New Delhi for supporting this research through a J. C. Bose National Fellowship (SR/S2/JCB-26/2009).

Supplementary material

10953_2015_320_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1220 kb)


  1. 1.
    Welton, T.: Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2084 (1999)CrossRefGoogle Scholar
  2. 2.
    Earle, M.J., Seddon, K.R.: Ionic liquids. Green solvents for the future. Pure Appl. Chem. 72, 1391–1398 (2000)CrossRefGoogle Scholar
  3. 3.
    Wassercheid, P., Welton, T. (eds.): Ionic Liquids in Synthesis. Wiley-VCH, Stuttgart (2002)Google Scholar
  4. 4.
    Wassercheid, P., Welton, T. (eds.): Ionic Liquids in Synthesis. Wiley-VCH, Weinheim (2003)Google Scholar
  5. 5.
    Fujita, K., MacFarlane, D.R., Forsyth, M., Fujita, M.Y., Murata, K., Nakamura, N., Ohno, H.: Solubility and stability of cytochrome c in hydrated ionic liquids: effect of oxo acid residues and kosmotropicity. Biomacromolecules 8, 2080–2086 (2007)CrossRefGoogle Scholar
  6. 6.
    Fujita, K., Ohno, H.: Enzymatic activity and thermal stability of metallo proteins in hydrated ionic liquids. Biopolymers 93, 1093–1099 (2010)CrossRefGoogle Scholar
  7. 7.
    Tiwari, S., Kumar, A.: Diels Alder reaction in water is faster than in ionic liquids. Angew. Chem. Int. Ed. 45, 4824–4825 (2006)CrossRefGoogle Scholar
  8. 8.
    Tiwari, S., Khupse, N.D., Kumar, A.: Intramolecular Diels–Alder reaction in ionic liquids: effect of ion-specific solvent friction. J. Org. Chem. 73, 9075–9083 (2008)CrossRefGoogle Scholar
  9. 9.
    Harris, K.R., Kanakubo, M., Woolf, L.A.: Temperature and pressure dependence of the viscosity of the ionic liquids 1-methyl-3-octylimidazolium hexafluorophosphate and 1-methyl-3-octylimidazolium tetrafluoroborate. J. Chem. Eng. Data 51, 1161–1167 (2006)CrossRefGoogle Scholar
  10. 10.
    Jacquemin, J., Husson, P., Padua, A.A.H., Majer, V.: Density and viscosity of pure and water-saturated ionic liquids. Green Chem. 8, 172–180 (2006)CrossRefGoogle Scholar
  11. 11.
    Harris, K.R., Kanakubo, M., Woolf, L.A.: Temperature and pressure dependence of the viscosity of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate: viscosity and density relationships in ionic liquids. J. Chem. Eng. Data 52, 2425–2430 (2007)CrossRefGoogle Scholar
  12. 12.
    Jacquemin, J., Anouti, M., Lemordant, D.: Physico-chemical properties of non-Newtonian shear thickening diisopropyl-ethylammonium based protic ionic liquids and their mixtures with water and acetonitrile. J. Chem. Eng. Data 56, 556–564 (2011)CrossRefGoogle Scholar
  13. 13.
    Khupse, N.D., Kumar, A.: Delineating solute–solvent interactions in the binary mixtures of ionic liquids in molecular solvents and preferential solvation approach. J. Phys. Chem. B 115, 711–718 (2011)CrossRefGoogle Scholar
  14. 14.
    Rai, G., Kumar, A.: Elucidation of ionic interactions in the protic ionic liquid solutions by isothermal titration calorimetry. J. Phys. Chem. B 118, 4160–4168 (2014)CrossRefGoogle Scholar
  15. 15.
    Manna, A., Kumar, A.: Invoking pairwise interactions in the water-promoted Diels–Alder reactions using ionic liquid as a co-solvent. ChemPhysChem, Page number not available yet. doi:10.1002/cphc.201402338Google Scholar
  16. 16.
    Franks, F.: Water. A Comprehensive Treatise. Plenum Press, New York. Vol. 1, (1972); Vol. 3 (1973); Vol. 6 (1979)Google Scholar
  17. 17.
    Gurney, R.W.: lonic Processes in Solution. McGraw-Hill, New York (1953)Google Scholar
  18. 18.
    Frank, H.S., Wen, W.Y.: Ion-solvent interaction structural aspects of ion-solvent interaction in aqueous solutions: A suggested picture of water structure. Discuss. Faraday Soc. 24, 133–140 (1957)CrossRefGoogle Scholar
  19. 19.
    Jones, G., Dole, M.: The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J. Am. Chem. Soc. 51, 2950–2964 (1929)CrossRefGoogle Scholar
  20. 20.
    Marcus, Y.: Ion Solvation. Wiley-Interscience, UK (1985)Google Scholar
  21. 21.
    Marcus, Y.: Effect of ions on the structure of water: structure making and breaking. Chem. Rev. 109, 1346–1970 (2009)CrossRefGoogle Scholar
  22. 22.
    Yamazaki, T., Kovalenko, A., Murashov, V.V., Patey, G.N.: Ion solvation in a water–urea mixture. J. Phys. Chem. B 114, 613–619 (2010)CrossRefGoogle Scholar
  23. 23.
    Funkner, S., Havenith, M., Schwaab, G.: Urea, a structure breaker? Answer from THz absorption spectroscopy. J. Phys. Chem. B 116, 13374–13380 (2012)CrossRefGoogle Scholar
  24. 24.
    von Hippel, P.H., Wong, K.Y.: Neutral salts: The generality of their effects on the stability of macromolecular conformation. Science 145, 577–580 (1964)CrossRefGoogle Scholar
  25. 25.
    McKenzie, H.A., Ralston, G.B.: The denaturation of proteins: Two states? Reversible or irreversible? Experientia 27, 617–624 (1971)CrossRefGoogle Scholar
  26. 26.
    Weerasinghe, S., Smith, P.E.: Cavity formation and preferential interactions in urea solutions: Dependence on urea aggregation. J. Chem. Phys. 118, 5901–5910 (2003)CrossRefGoogle Scholar
  27. 27.
    Bennion, B.J., Daggett, V.: The molecular basis for the chemical denaturation of proteins by urea. Proc. Natl. Acad. Sci. U.S.A. 100, 5142–5147 (2003)CrossRefGoogle Scholar
  28. 28.
    Rosgen, J., Pettitt, B.M., Bolen, D.W.: Uncovering the basis for nonideal behaviour of biological molecules. Biochemistry 43, 14472–14484 (2004)CrossRefGoogle Scholar
  29. 29.
    Bonhote, P., Dias, A., Papageorgiou, N., Kalyanasundaram, K., Graltzel, M.: Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem. 35, 1168–1178 (1996)CrossRefGoogle Scholar
  30. 30.
    Suarez, P.A.Z., Einloft, S., Dullius, J.E.L., de Souza, R.F., Dupont, J.J.: Synthesis and physical-chemical properties of ionic liquids based on 1-n-butyl-3-methylimidazolium cation. Chim. Phys. Phys. Chim. Biol. 95, 1626–1639 (1998)CrossRefGoogle Scholar
  31. 31.
    Khupse, N.D., Kumar, A.: The cosolvent-directed Diels–Alder reaction in ionic liquids. J. Phys. Chem. A 115, 10211–10217 (2011)CrossRefGoogle Scholar
  32. 32.
    Huddleston, J.G., Visser, A.E., Reichert, W.M.: Brokers, H.D.W.G.A., Rogers, R.D.: Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 3, 156–164 (2001)CrossRefGoogle Scholar
  33. 33.
    Noda, A., Hayamizu, K., Watanbe, M.: Pulsed-gradient spin-echo 1H and 19F NMR ionic diffusion coefficient, viscosity, and ionic conductivity of non-chloroaluminate room temperature ionic liquids. J. Phys. Chem. B 105, 4603–4610 (2001)CrossRefGoogle Scholar
  34. 34.
    For example see: Stark, A., Behrend, P., Braun, O., Muller, A., Ranke, J., Ondruschka, B., Jastorff, B.: Purity specification methods for ionic liquids. Green Chem. 10, 1152–1161 (2008)Google Scholar
  35. 35.
    Seddon, K.R., Stark, A., Torres, M.J.: Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl. Chem. 72, 2275–2287 (2000)CrossRefGoogle Scholar
  36. 36.
    Kim, K.-S., Shin, B.-K., Lee, H.: Physical and electrochemical properties of 1-butyl-3-methylimidazolium bromide, 1-butyl-3-methylimidazolium iodide, and 1-butyl-3-methylimidazolium tetrafluoroborate. Korean J. Chem. Eng. 21, 1010–1014 (2004)CrossRefGoogle Scholar
  37. 37.
    Sastry, N.V., Vaghela, N.M., Macwan, P.M.: Densities, excess molar and partial molar volumes for water + 1-butyl-or, 1-hexyl-or, 1-octyl-3-methylimidazolium halide room temperature ionic liquids at T = (298.15 and 308.15) K. J. Mol. Liq. 180, 12–18 (2013)CrossRefGoogle Scholar
  38. 38.
    Li, J.-G., Hu, Y.-F., Sun, S.-F., Liu, Y.-S., Liu, Z.-C.: Densities and dynamic viscosities of the binary system (water + 1-hexyl-3-methylimidazolium bromide) at different temperatures. J. Chem. Thermodyn. 42, 904–908 (2010)CrossRefGoogle Scholar
  39. 39.
    Sanmamed, Y.A., González-Salgado, D., Troncoso, J., Cerdeirina, C.A., Romani, L.: Viscosity-induced errors in the density determination of room temperature ionic liquids using vibrating tube densitometry. Fluid Phase Equil. 252, 96–102 (2007)CrossRefGoogle Scholar
  40. 40.
    Mokhtarani, B., Mojtahedi, M.M., Mortaheb, H.R., Mafi, M., Yazdani, F., Sadeghian, F.: Densities, refractive indices, and viscosities of the ionic liquids 1-methyl-3-octylimidazolium tetrafluoroborate and 1-methyl-3-butylimidazolium perchlorate and their binary mixtures with ethanol at several temperatures. J. Chem. Eng. Data 53, 677–682 (2008)CrossRefGoogle Scholar
  41. 41.
    Horne, R.A. (ed.): Water and Aqueous Solutions, Structure, Thermodynamics and Transport Processes. Wiley-Interscience, New York, (1972)Google Scholar
  42. 42.
    Isono, T.: Density, viscosity, and electrolytic conductivity of concentrated aqueous electrolyte solutions at several temperatures. alkaline-earth chlorides, LaCl3, Na2(SO4), NaNO3, NaBr, KNO3, KBr, and Cd(NO3)2. J. Chem. Eng. Data 29, 45–52 (1984)CrossRefGoogle Scholar
  43. 43.
    Liu, W., Zhao, T., Zhang, Y., Wang, H., Yu, M.: The physical properties of aqueous solutions of the ionic liquids [C4mim][BF4]. J. Solution Chem. 35, 1337–1346 (2006)CrossRefGoogle Scholar
  44. 44.
    Hu, H.C., Soriano, A.N., Leron, R.B., Li, M.H.: Molar heat capacity of four aqueous ionic liquid mixtures. Thermochim. Acta 519, 44–49 (2011)CrossRefGoogle Scholar
  45. 45.
    Verevkin, S.P., Zaitsau, D.H., Emelyanenko, V.N., Ralys, R.V., Yermalayeu, A.V., Schick, C.: Does alkyl chain length really matter? Structure–property relationships in thermochemistry of ionic liquids. Thermochim. Acta 562, 84–95 (2013)CrossRefGoogle Scholar
  46. 46.
    Ozawa, R., Hayashi, S., Saha, S., Kobayashi, A., Hamaguchi, H.: Rotational isomerism and structure of the 1-Butyl-3-methylimidazolium cation in the ionic liquid state. Chem. Lett. 32, 948–949 (2003)CrossRefGoogle Scholar
  47. 47.
    Mukerjee, P., Ray, A.: The effect of urea on micelle formation and hydrophobic bonding. J. Phys. Chem. 67, 190–192 (1963)CrossRefGoogle Scholar
  48. 48.
    Rezus, Y.L.A., Bakker, H.J.: Effect of urea on the structural dynamics of water. Proc. Natl. Acad. Sci. U.S.A. 103, 18417–18420 (2006)CrossRefGoogle Scholar
  49. 49.
    Carvalho, B.L., Briganti, G., Chen, S.H.: Lowering of the miscibility gap in the dioctanoylphosphatidylcholine–water system by addition of urea. J. Phys. Chem. 93, 4282–4286 (1989)CrossRefGoogle Scholar
  50. 50.
    Dias, L.G., Florenzano, F.H., Reed, W.F., Baptista, M.S., Souza, S.M.B., Alvarez, E.B., Chaimovich, H., Cuccovia, I.M., Amaral, C.L.C., Brasil, C.R., Romsted, L.S., Politi, M.J.: Effect of urea on biomimetic systems: Neither water 3-D structure rupture nor direct mechanism, simply a more “polar water”. Langmuir 18, 319–324 (2002)CrossRefGoogle Scholar
  51. 51.
    Schick, M.J.: Effect of electrolyte and urea on micelle formation. J. Phys. Chem. 68, 3585–3592 (1964)CrossRefGoogle Scholar
  52. 52.
    Jungnickel, C., Łuczak, J., Ranke, J., Fernandez, J., Muller, A., Thoming, J.: Micelle formation of imidazolium ionic liquids in aqueous solution. Coll. Surf. A: Physicochem. Eng. Aspects 316, 278–284 (2008)CrossRefGoogle Scholar
  53. 53.
    Abraham, M.H., Liszi, J., Papp, E.: Calculations on ionic solvation Part 6. Structure-making and structure-breaking effects of alkali halide ions from electrostatic entropies of solvation. Correlation with viscosity B-coefficients, nuclear magnetic resonance B-coefficients and partial molal volumes. Chem. Soc. Faraday. Trans.78, 197–211 (1982)Google Scholar
  54. 54.
    Yoshida, K., Ibuki, K., Ueno, M.: Estimated ionic B-coefficients from NMR measurements in aqueous electrolyte solutions. J. Solution Chem. 25, 435–453 (1996)CrossRefGoogle Scholar
  55. 55.
    Wen, W.Y., Kaatze, U.: Aqueous solutions of azoniaspiroalkane halides. 3. Dielectric relaxation. J. Phys. Chem. 81, 177–181 (1977)CrossRefGoogle Scholar
  56. 56.
    Tromans, A., May, P.M., Hefter, G., Sato, T., Buchner, R.: Ion pairing and solvent relaxation processes in aqueous solutions of sodium malonate and sodium succinate. J. Phys. Chem. B 108, 13789–13795 (2004)CrossRefGoogle Scholar
  57. 57.
    Wachter, W., Fernandez, S., Buchner, R., Hefter, G.: Ion association and hydration in aqueous solutions of LiCl and Li2SO4 by dielectric spectroscopy. J. Phys. Chem. B 111, 9010–9017 (2007)CrossRefGoogle Scholar
  58. 58.
    Omta, A.W., Kropman, M.F., Woutersen, S., Bakker, H.J.: Negligible effect of ions on the hydrogen-bond structure in liquid water. Science. 301, 347–349 (2003) and references cited thereinGoogle Scholar
  59. 59.
    Bakker, H.J., Kropman, M.F., Omta, A.W.: Effect of ions on the structure and dynamics of liquid water. J. Phys. 17, S3215–S3224 (2005) and references cited thereinGoogle Scholar
  60. 60.
    Mancinelli, R., Botti, A., Bruni, M.A., Soper, A.K.: Perturbation of water structure due to monovalent ions in solution. Phys. Chem. Chem. Phys. 9, 2959–2967 (2007)CrossRefGoogle Scholar
  61. 61.
    Marcus, Y.: Electrostriction in electrolyte solutions. Chem. Rev. 111, 2761–2783 (2011)CrossRefGoogle Scholar
  62. 62.
    Tielrooij, K.J., Garcia-Araez, N., Bonn, M., Bakker, H.J.: Cooperativity in ion hydration. Science 328, 1006–1009 (2010)CrossRefGoogle Scholar
  63. 63.
    Idrissi, A., Cinar, E., Longelin, S., Damay, P.: The effect of temperature on urea–urea interactions in water: a molecular dynamics simulation. J. Mol. Liq. 110, 201–208 (2004)CrossRefGoogle Scholar
  64. 64.
    Sacco, A., Holz, M.: NMR studies on hydrophobic interactions in solution Part 2.—Temperature and urea effect on the self-association of ethanol in water. J. Chem. Soc. Faraday Trans. 93, 1101–1104 (1997)CrossRefGoogle Scholar
  65. 65.
    Soper, A.K., Castner, E.W., Luzar, A.: Impact of urea on water structure: a clue to its properties as a denaturant? Biophys. Chem. 105, 649–666 (2003)CrossRefGoogle Scholar
  66. 66.
    Shimizu, A., Fumino, K., Yukiyasu, K., Tanaguchi, Y.: NMR studies on dynamic behavior of water molecule in aqueous denaturant solutions at 25 °C: Effects of guanidine hydrochloride, urea and alkylated ureas. J. Mol. Liq. 85, 269–278 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Physical and Materials Chemistry DivisionCSIR-National Chemical LaboratoryPuneIndia

Personalised recommendations