Journal of Solution Chemistry

, Volume 44, Issue 2, pp 360–377 | Cite as

Solution Thermodynamics and Preferential Solvation of Sulfamerazine in Methanol + Water Mixtures

  • Daniel R. Delgado
  • Fleming Martínez


The solubility of sulfamerazine (SMR) in methanol + water co-solvent mixtures was measured at five temperatures from 293.15 to 313.15 K. The mole fraction solubility of this sulfonamide was maximal in pure methanol (δ 1 = 29.6 MPa1/2) and minimal in water (δ 2 = 47.8 MPa1/2) at all the temperatures studied. The apparent thermodynamic functions Gibbs energy, enthalpy, and entropy of solution were obtained from these solubility data by using the van’t Hoff and Gibbs equations. Apparent thermodynamic quantities of mixing were also calculated by using the ideal solubilities reported in the literature. A non-linear enthalpy–entropy relationship was observed for SMR in the plot of enthalpy versus Gibbs energy of mixing. This plot shows two different trends according to the slopes obtained when the mixture’s composition changes. Accordingly, the driving mechanism for the SMR solution process in water-rich mixtures is the entropy whereas it is the enthalpy in mixtures with mass fractions of methanol greater than 0.20. Additionally, the preferential solvation of this drug by the solvents was analyzed by means of the inverse Kirkwood–Buff integrals, which indicate that it is preferentially solvated by water in water-rich mixtures but preferentially solvated by methanol in methanol-rich mixtures.


Sulfamerazine Methanol + water mixtures Solubility Solution thermodynamics Preferential solvation IKBI 



We thank the Department of Pharmacy of the National University of Colombia for providing us the equipment and laboratories used.


  1. 1.
    Avdeef, A.: Absorption and Drug Development, Solubility. Permeability and Charge State. Wiley-Interscience, Hoboken (2003)CrossRefGoogle Scholar
  2. 2.
    Pacheco, D.P., Martínez, F.: Thermodynamic analysis of the solubility of naproxen in ethanol + water cosolvent mixtures. Phys. Chem. Liq. 45, 581–595 (2007)CrossRefGoogle Scholar
  3. 3.
    Jouyban, A.: Handbook of Solubility Data for Pharmaceuticals. CRC Press, Boca Raton (2010)Google Scholar
  4. 4.
    Jouyban, A.: Review of the cosolvency models for predicting solubility of drugs in water–cosolvent mixtures. J. Pharm. Pharmaceut. Sci. 11, 32–58 (2008)Google Scholar
  5. 5.
    Papich, M.G., Riviere, J.E.: Sulfonamides and potentiated sulfonamides. In: Riviere, J.E., Papich, M.G. (eds.) Veterinary Pharmacology and Therapeutics, 9th edn. Wiley, New York (2009)Google Scholar
  6. 6.
    Martínez, F., Gómez, A.: Thermodynamic study of the solubility of some sulfonamides in octanol, water, and the mutually saturated solvents. J. Solution Chem. 30, 909–923 (2001)CrossRefGoogle Scholar
  7. 7.
    Yalkowsky, S.H., He, Y.: Handbook of Aqueous Solubility Data. CRC Press, Boca Raton (2003)CrossRefGoogle Scholar
  8. 8.
    Delgado, D.R., Martínez, F.: Solubility and solution thermodynamics of sulfamerazine and sulfamethazine in some ethanol + water mixtures. Fluid Phase Equilib. 360, 88–96 (2013)CrossRefGoogle Scholar
  9. 9.
    Delgado, D.R., Martínez, F.: Solubility and solution thermodynamics of some sulfonamides in 1-propanol + water mixtures. J. Solution Chem. 43, 836–852 (2014)CrossRefGoogle Scholar
  10. 10.
    Chen, B., Du, Y., Wang, H.: Study on enantiomeric separation of basic drugs by NACE in methanol-based medium using erythromycin lactobionate as a chiral selector. Electrophoresis 31, 371–377 (2010)CrossRefGoogle Scholar
  11. 11.
    Thote, A.J., Gupta, R.B.: Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release. Nanomedicine 1, 85–90 (2005)CrossRefGoogle Scholar
  12. 12.
    Kazakevich, Y., Lobrutto, R.: HPLC for Pharmaceutical Scientists. Wiley, Hoboken (2007)CrossRefGoogle Scholar
  13. 13.
    Delgado, D.R., Romdhani, A., Martínez, F.: Thermodynamics of sulfanilamide solubility in propylene glycol + water mixtures. Lat. Am. J. Pharm. 30, 2024–2030 (2011)Google Scholar
  14. 14.
    Delgado, D.R., Romdhani, A., Martínez, F.: Solubility of sulfamethizole in some propylene glycol + water mixtures at several temperatures. Fluid Phase Equilib. 322, 113–119 (2012)CrossRefGoogle Scholar
  15. 15.
    Delgado, D.R., Rodríguez, G.A., Holguín, A.R., Martínez, F., Jouyban, A.: Solubility of sulfapyridine in propylene glycol + water mixtures and correlation with the Jouyban–Acree model. Fluid Phase Equilib. 341, 86–95 (2013)CrossRefGoogle Scholar
  16. 16.
    Delgado, D.R., Rodríguez, G.A., Martínez, F.: Thermodynamic study of the solubility of sulfapyridine in some ethanol + water mixtures. J. Mol. Liq. 177, 156–161 (2013)CrossRefGoogle Scholar
  17. 17.
    Delgado, D.R., Martínez, F.: Solution thermodynamics of sulfadiazine in ethanol + water mixtures. J. Mol. Liq. 187, 99–105 (2013)CrossRefGoogle Scholar
  18. 18.
    Delgado, D.R., Peña, M.Á., Martínez, F.: Preferential solvation of some sulfonamides in propylene glycol + water solvent mixtures according to the IKBI and QLQC methods. J. Solution Chem. 43, 360–374 (2014)CrossRefGoogle Scholar
  19. 19.
    Delgado, D.R., Martínez, F.: Preferential solvation of sulfadiazine, sulfamerazine and sulfamethazine in ethanol + water solvent mixtures according to the IKBI method. J. Mol. Liq. 193, 152–159 (2014)CrossRefGoogle Scholar
  20. 20.
    Delgado, D.R., Peña, M.Á., Martínez, F.: Preferential solvation of some sulfonamides in 1,4-dioxane + water co-solvent mixtures at 298.15 K according to the inverse Kirkwood–Buff integrals method. Rev. Acad. Colomb. Cienc 38, 104–114 (2014)Google Scholar
  21. 21.
    Delgado, D.R., Martínez, F.: Preferential solvation of some structurally related sulfonamides in 1-propanol + water co-solvent mixtures. Phys. Chem. Liq. (2015). doi: 10.1080/00319104.2014.961191 Google Scholar
  22. 22.
    Delgado, D.R., Martínez, F.: Solubility and preferential solvation of sulfadiazine in methanol + water mixtures at several temperatures. Fluid Phase Equilib. 379, 128–138 (2014)CrossRefGoogle Scholar
  23. 23.
    Hansen, C.M.: Hansen Solubility Parameters, 2nd edn. Taylor and Francis Group, Boca Raton (2007)CrossRefGoogle Scholar
  24. 24.
    Barton, A.: Handbook of Solubility Parameters and Other Cohesion Parameters, 2nd edn. CRC Press, New York (1991)Google Scholar
  25. 25.
    Connors, K.A.: Thermodynamics of Pharmaceutical Systems. Wiley, Hoboken (2002)CrossRefGoogle Scholar
  26. 26.
    Yalkowsky, S.H., Roseman, T.J.: Solubilization of drugs by cosolvents. In: Yalkowsky, S.H. (ed.) Techniques of Solubilization of Drugs. Marcel Dekker, New York (1981)Google Scholar
  27. 27.
    Rubino, J.T., Obeng, E.K.: Influence of solute structure on deviations from the log-linear solubility equation in propylene glycol: water mixtures. J. Pharm. Sci. 80, 479–483 (1991)CrossRefGoogle Scholar
  28. 28.
    Pacheco, D.P., Martínez, F.: Desviaciones presentadas por la solubilidad del naproxén en mezclas cosolventes etanol + agua frente al modelo logarítmico-lineal de Yalkowsky y Roseman. Rev. Acad. Colomb. Cienc. 32, 403–410 (2008)Google Scholar
  29. 29.
    Gantiva, M., Yurquina, A., Martínez, F.: Desempeño de los modelos de Yalkowsky & Roseman y de Jouyban & Acree en la estimación de la solubilidad del ketoprofeno en mezclas cosolventes etanol + agua. Vitae, Rev. Fac. Quím. Farm 16, 361–368 (2009)Google Scholar
  30. 30.
    Kristl, A., Vesnaver, G.: Thermodynamic investigation of the effect of octanol–water mutual miscibility on the partitioning and solubility of some guanine derivatives. J. Chem. Soc., Faraday Trans. 91, 995–998 (1995)CrossRefGoogle Scholar
  31. 31.
    Krug, R.R., Hunter, W.G., Grieger, R.A.: Enthalpy–entropy compensation. 2. Separation of the chemical from the statistical effects. J. Phys. Chem. 80, 2341–2351 (1976)CrossRefGoogle Scholar
  32. 32.
    Bevington, P.R.: Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill Book Co, New York (1969)Google Scholar
  33. 33.
    Barrante, J.R.: Applied Mathematics for Physical Chemistry, 2nd edn. Prentice Hall Inc, Upper Saddle River (1998)Google Scholar
  34. 34.
    Perlovich, G.L., Kurkov, S.V., Kinchin, A.N., Bauer-Brandl, A.: Thermodynamics of solutions III: Comparison of the solvation of (+)-naproxen with other NSAIDs. Eur. J. Pharm. Biopharm. 57, 411–420 (2004)CrossRefGoogle Scholar
  35. 35.
    Holguín, A.R., Delgado, D.R., Martínez, F., Marcus, Y.: Solution thermodynamics and preferential solvation of meloxicam in propylene glycol + water mixtures. J. Solution Chem. 40, 1987–1999 (2011)CrossRefGoogle Scholar
  36. 36.
    Mora, C.P., Martínez, F.: Thermodynamic quantities relative to solution processes of naproxen in aqueous media at pH 1.2 and 7.4. Phys. Chem. Liq. 44, 585–596 (2006)CrossRefGoogle Scholar
  37. 37.
    Romero, S., Reillo, A., Escalera, B., Bustamante, P.: The behaviour of paracetamol in mixtures of aprotic and amphiprotic-aprotic solvents. Relationship of solubility curves to specific and nonspecific interactions. Chem. Pharm. Bull. 44, 1061–1066 (1996)CrossRefGoogle Scholar
  38. 38.
    Bustamante, P., Romero, S., Peña, A., Escalera, B., Reillo, A.: Nonlinear enthalpy–entropy compensation for the solubility of drugs in solvent mixtures: paracetamol, acetanilide and nalidixic acid in dioxane–water. J. Pharm. Sci. 87, 1590–1596 (1998)CrossRefGoogle Scholar
  39. 39.
    Marcus, Y.: On the preferential solvation of drugs and PAHs in binary solvent mixtures. J. Mol. Liq. 140, 61–67 (2008)CrossRefGoogle Scholar
  40. 40.
    Marcus, Y.: Preferential solvation of ibuprofen and naproxen in aqueous 1,2-propanediol. Acta Chim. Slov. 56, 40–44 (2009)Google Scholar
  41. 41.
    Fedors, R.F.: A method for estimating both the solubility parameters and molar volumes of liquids. Polym. Eng. Sci. 14, 147–154 (1974)CrossRefGoogle Scholar
  42. 42.
    Marcus, Y.: The Properties of Solvents. Wiley, Chichester (1998)Google Scholar
  43. 43.
    Kamlet, M.J., Taft, R.W.: The solvatochromic comparison method. I. The beta-scale of solvent hydrogen-bond acceptor (HBA) basicities. J. Am. Chem. Soc. 98, 377–383 (1976)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Grupo de Investigaciones Farmacéutico-Fisicoquímicas, Departamento de FarmaciaUniversidad Nacional de ColombiaBogotáColombia

Personalised recommendations